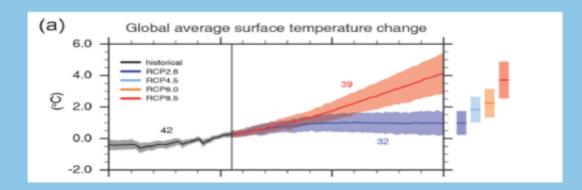


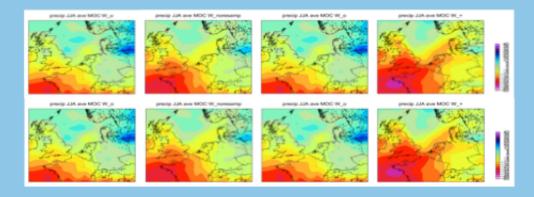
Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Milieu

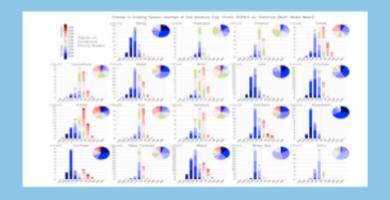
Exploiting the climate archives for meaningful events

Bart van den Hurk (KNMI) Jakob Zscheischler (ETH)

acknowledging Ted Shepherd (U. Reading)

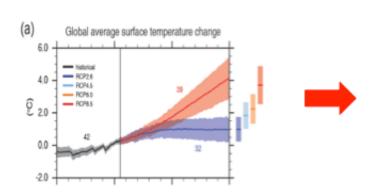

The "IPCC" approach

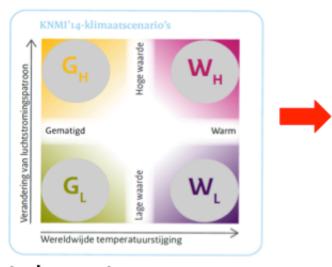



- Future conditions are mapped using a scenario framework
 - complex GCMs as major mapping tool

 Regional downscaling to generate "locally relevant" information

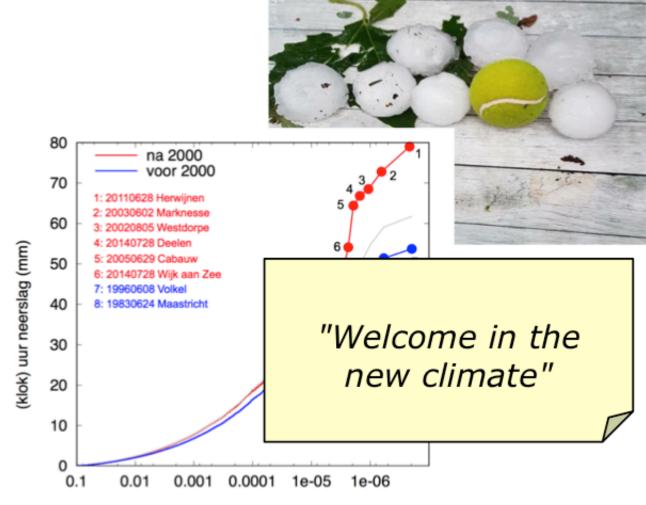
Detailled impact modelling to generate sector/region specific information





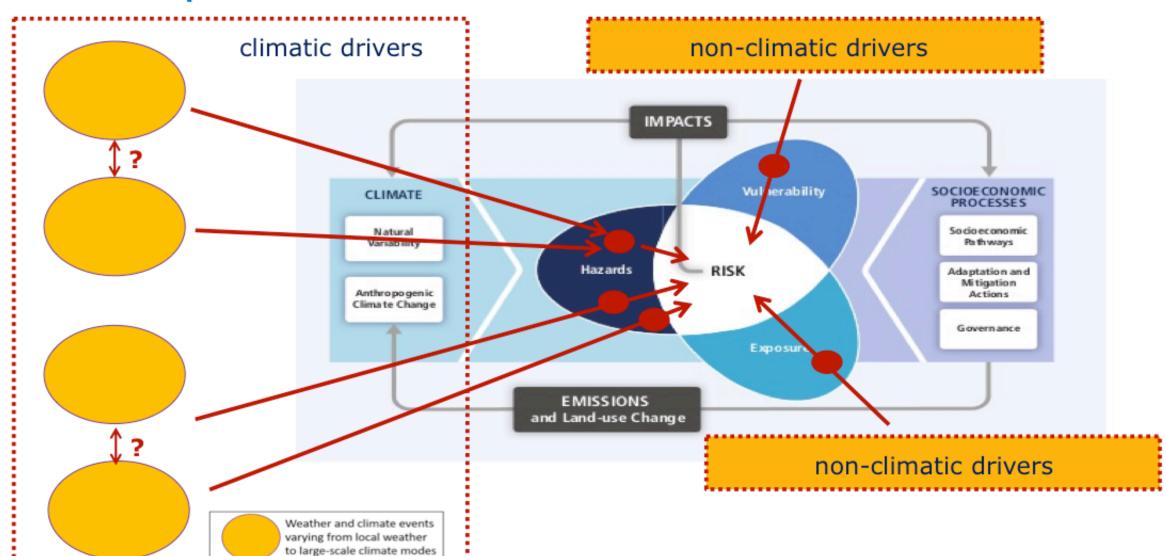
Local "actionable" scenarios

- > (1) Synthesis of the large ensemble
- > (2) A local interpretation of this summary


 Well embedded in Dutch water management design

Scenario change values for the climate around 2050°				Scenario change values for the climate around 2085° (2071-2100)				Natural variations averaged over
GL	G _H	WL	W _H	GL	GH	WL	W _H	30 years*
41 °C	41 °C	42°C	42 °C	+1.5°C	41.5°C	43.5 ℃	48.5 ℃	
Low value	High value	Low value	High value	Low value	High value	Low value	High value	
+15 to +30 cm	+15 to +30 cm	+20 to +40 cm	+20 to +40 cm	+25 to +60 cm	+25 to +60 cm	+45 to +80 cm	+45 to +80 cm	#1.4cm
+1 to +5.5 mm/year	41 to 45.5 mm/year	+3.5 to +7.5 mm/year	+3.5 to +7.5 mm/year	41 to 47.5 mm/year	+1 to +7.5 mm/year	44 to +10.5 mm/year	44 to +10.5 mm/year	±1.4 mm/year
+1.0°C	+1.4°C	+2.0°C	+2.3°C	+1.3 °C	+1.7°C	+2.8°C	+3.7 °C	# 0.16°C
14%	+2.5%	45.5%	45%	+5%	45%	+6%	+7%	442%
+0.6%	+1.6%	-0.8%	+1.2%	-0.5%	+1.1%	-0.8%	+1.4%	±1.6%
+3%	45%	14%	+7%	+2.5%	45.5%	+6%	+10%	å 1.9%
-110 hours	-110 hours	-110 hours	-110 hours	-120 hours	-120 hours	-120 hours	-120 hours	± 39 hours
+1.1°C	+1.6°C	+2.1℃	+2.7℃	+1.5℃	+2.0°C	+2.8°C	+4.1°C	± 0.48 °C
-8%	-16%	-13%	-20%	-10%	-17%	-13%	-24%	-
+1.0°C	+1.6°C	+2.0°€	+2.5℃	+1.2℃	+2.0℃	+2.7°C	+3.8°C	±0.46°C
+1.1°C	÷1.7°C	+2.2℃	+2.8℃	*1.4°C	+2.1°C	+3.0℃	+4.4°C	±0.51°C
+2.0 +0.6								
			_	_			_	_
-30 -50	But a lot of essential							
+3	D	at c	1 10	L OI	E 5	5 EI	ILIC	11
44.5								
+6	information on							
-0.3	iniorniation on							
+9.5								
-1.1	weather disasters							
-3	weather, disasters,							
-1.4								
+0.9	romoto imposto							
+4.5	remote impacts,							
+1.0	i dili ded ili ipaded/							
+3.5	annon aum din a affacta							
+0.9	compounding effects							
+1.1 +0.9	compounding circus							
+1.4	a kan ila la la la la la la							
+22	etc. is hidden 🧪							
+0.5		•				ч С		
+1.2								492%
+2.1 to +5								V .
+1.7 to +10%	+2.0 to +13%	+3 to +21%	+2.5 to +22%	+2.5 to +15%	+2.5 to +17%	+5 to +35%	+5 to +40%	å 15%
+5.5 to +11%	+7 to +14%	+12 to +23%	+13 to +25%	+8 to +16%	+9 to +19%	+19 to +40%	+22 to +45%	à 14%
+0.5%	-5.5%	+0.7%	-10%	+2.1%	-5.5%	+4%	-16%	46.4%
+4.5 to +18%	-4.5 to +10%	+6 to +30%	-8.5 to +14%	+5 to +2.3%	-3.5 to +14%	+2.5 to +35%	-15 to +14%	± 24%
+2.1%	45%	+1.0%	+6.5%	+0.9%	+5.5%	+3%	+9.5%	±2.4%
-0.6%	-2.0%	+0.1%	-2.5%	0.0%	-2.0%	-0.6%	-3%	± 0.86%
+4%	+7%	+4%	+11%	+3.5%	+8.5%	+8%	+15%	±2.8%
44.5%	+20%	+0.7%	+30%	+1.0%	+19%	+13%	+50%	±13%
+5%	+17%	+4.5%	+25%	+3.5%	+17%	+14%	+40%	
+1.1°C	+1.3°C	+2.2°€	+2.3 ℃	+1.5°C	+1.6°C	43.3 °C	43.8°C	±0.27°C
+7%	+8%	+3%	+7.5%	+7.5%	+9%	+5.5%	412%	± 9.0%

a 1/9000 yrs event (v Oldenborgh et al, 2017) 350 300 [mm/day] 250 200 150 100 GEV scale fit 1900 50 GEV scale fit 2017 Houston 2017 1000 10000 Return period [yr]



Events triggering discussions...

The concept of risk

Compound events

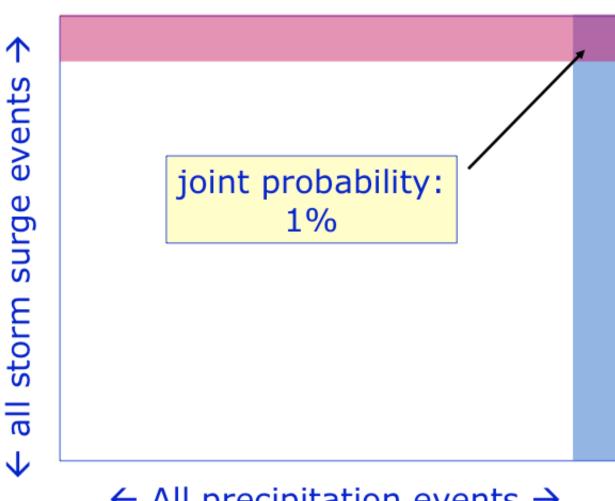
Compound weather/climate events refer to the *combination* of *multiple* drivers and/or hazards that contributes to societal or environmental *risk*.

DispatchDate: 26.04.201

nature climate change

Future climate risk from compound events

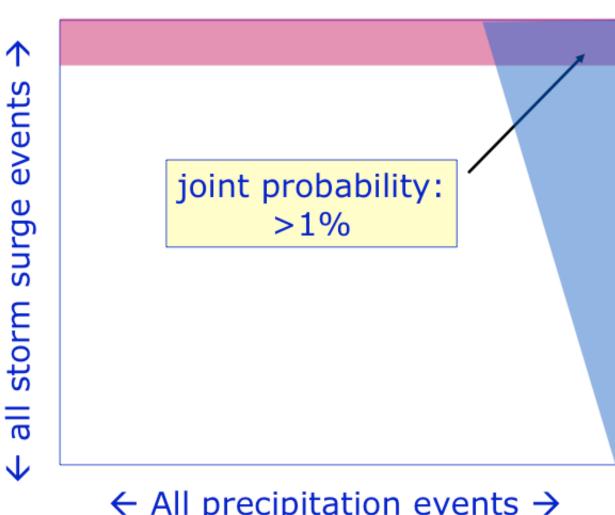
Jakob Zscheischler [©] ^{1*}, Seth Westra², Bart J. J. M. van den Hurk [©] ^{3,4}, Sonia I. Seneviratne [©] ¹, Philip J. Ward [©] ⁴, Andy Pitman ⁵, Amir AghaKouchak [©] ⁶, David N. Bresch ^{7,8}, Michael Leonard ², Thomas Wahl ⁹ and Xuebin Zhang ¹⁰


I Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a 'compound event'. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.

Zscheischler et al, NCC 2018

The concept of compound events

highest 10%

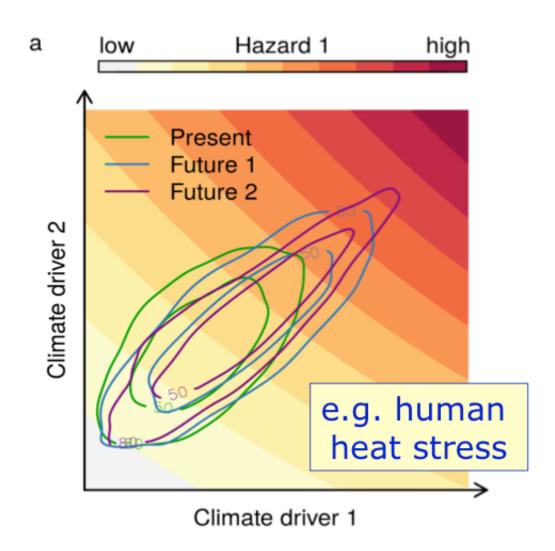


← All precipitation events →

The concept of compound events

highest 10%

← All precipitation events →



Examples

- Drought
- Heat stress
- Fire risk
- Coastal flooding
- Concurrent phenomena

- Precipitation, evapotranspiration, historic evolution of soil moisture, temperature
- Diurnal cycle of temperature, humidity
- Temperature, precipitation, relative humidity, wind, lightning
- Storm surge, precipitation, discharge
- wind, precipitation, temperature, air pollution, ...

Impact varies with combination of drivers

The challenge of compound events

Document:

- Which climate variables?
- What do we know ab
- Do we have sufficient

Understand:

- What governing proc
- What spatial and tem
- Do they change in re

European COST action just approved

(to be lead by Jakob Zscheischler - ETH)

Attribute:

- Can we identify causes?
- Can we use current modelling tools to do attribution?

Simulate:

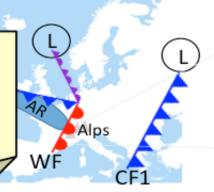
- Are models reliable enough?
- How do we know?
- Can they project effects of change in climate or other drivers well?

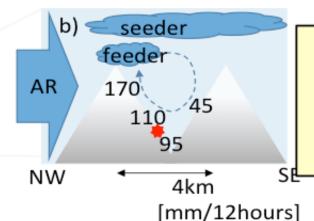
Storylines

 An alternative approach to representing uncertainty in physical aspects of climate change

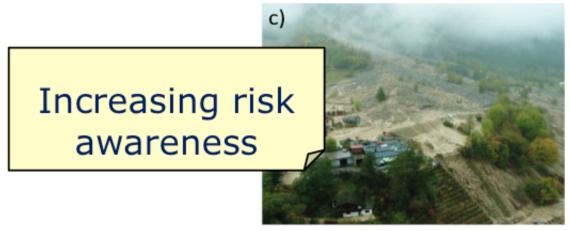
Shepherd at al, Clim.Dyn (under revision)

- Storyline = a physically selfconsistent unfolding of past events, or of plausible future events or pathways.
- No a priori probability of the storyline is assessed; emphasis is placed instead on understanding the driving factors involved, and the plausibility of those factors


Reasons to use storylines

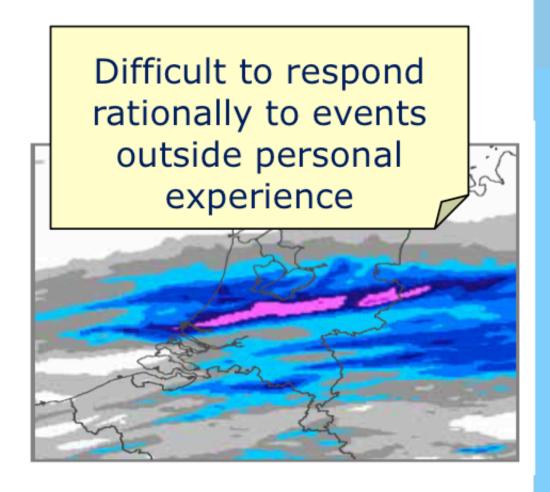

Swiss Alps, 8-10 Oct 2011

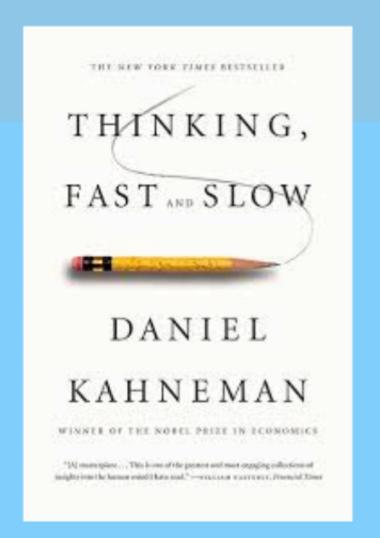
Synoptic-scale flow


Physical basis for exploring climate records

Local precipitation and circulation

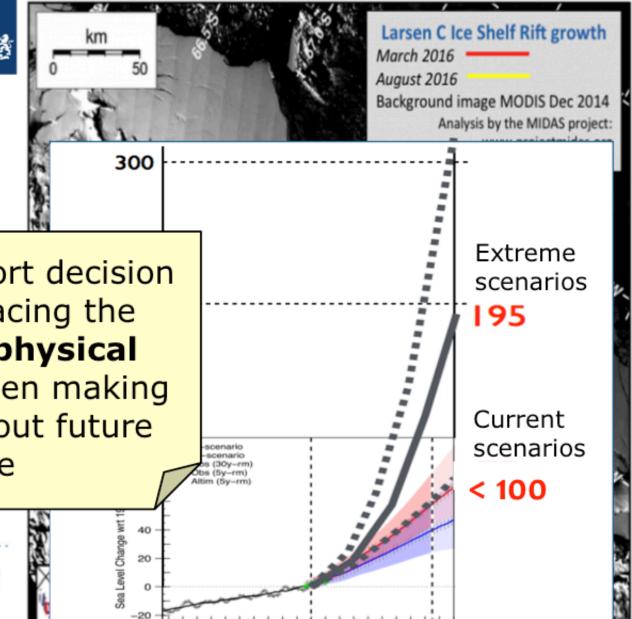
Exploring boundaries of plausibility

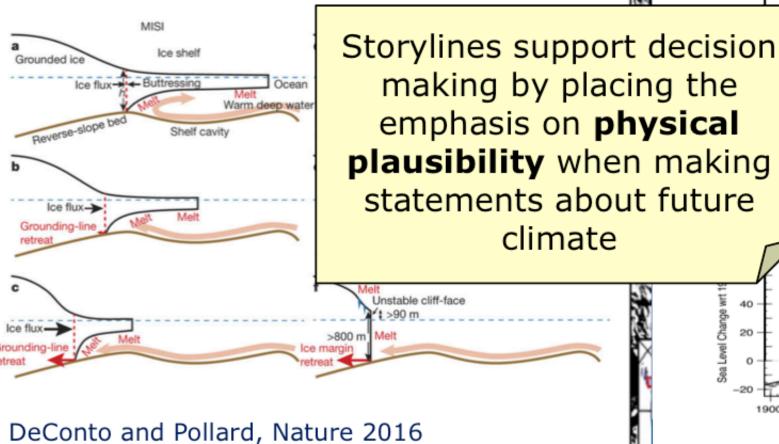

a)


Shepherd at al, Clim.Dyn (under revision)

Adaptation measures

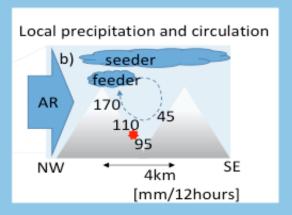
Increasing risk awareness

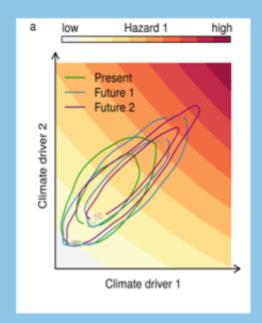


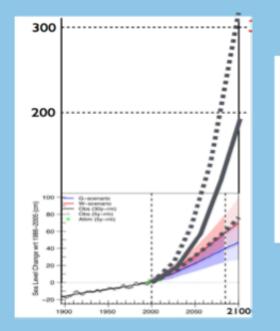


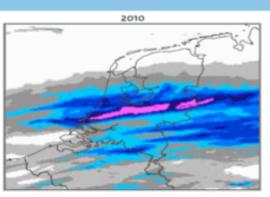
Attema et al, ERL 2014

Plausible boundaries

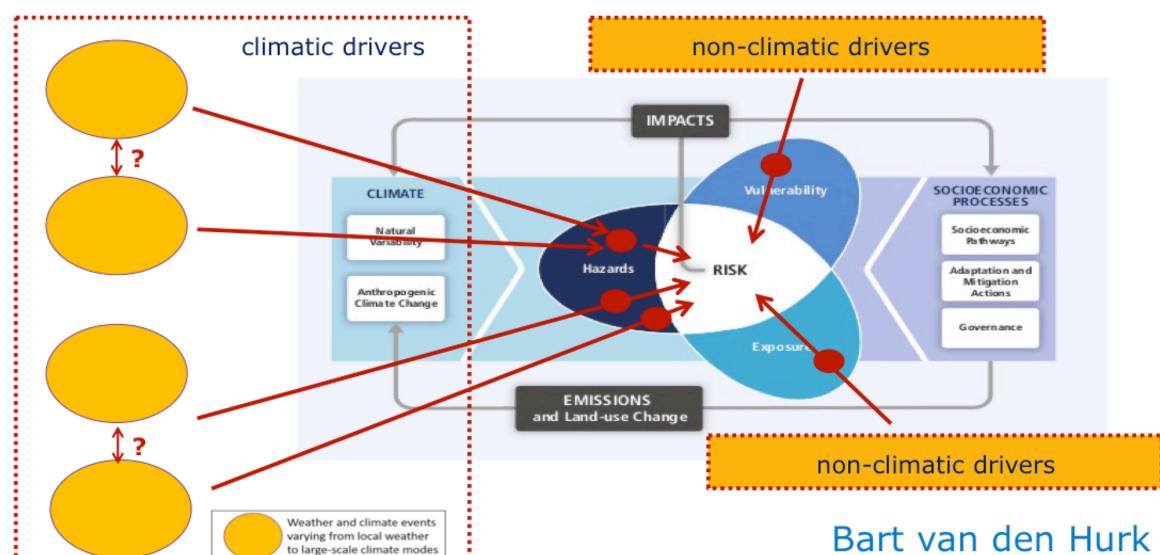

Le Bars et al, ERL, 2017




Conclusions



- Top down scenario analyses need to be accompanied by bottom-up event analyses
- Many events have compounding drivers
- Storytelling helps develop new climate assessments
- Changes our interrogation of climate records
- Emphasises (physical) plausibility next to probability



Thank you

Bart van den Hurk hurkvd@knmi.nl