Temporal variability of atmospheric column energy balance residual

Seiji Kato¹, Norman G. Loeb¹, John Fasullo², David A. Rutan³, and Fred. G. Rose³

¹NASA Langley Research Center ²National Center for Atmospheric Research ³Science System & Applications Inc.

Current status of satellite based surface energy balance residual in Wm⁻²

L'Ecuyer et al. 2015 (J. Climate) Surface: 344-398-23-75+189-22=15 Wm⁻² (depending on data sets used) Ocean heating rate: 0.53 to 0.75 Wm⁻² (Lyman et al. 2010 Nature) 0.4 - 0.6 Wm-2 in 0 to 2000 m layer (Roemmich et al. 2015) 0.64+-0.44 Wm-2 for the entire column (Llovel et al. 2014)

Objective of this study

- To find where large energy balance residuals exist.
- To examine regional residuals with newer versions of data products.
 - Top-of-atmosphere and surface radiation products (EBAF-TOA and –surface) were revised from Edition 2.8 to Edition 4.0
 - Precipitation data product (Global Precipitation Climatology Project) was revised from Version 2.2 to 2.3.
 - Dynamical energy transport computed from ERA-Interim is revised.
 - Seaflux data product was extended through December 2016.
- How do the energy balance residual vary temporally and spatially?
- What is needed to reduce the residual.

Testing atmospheric energy balance using observations Data source (March 2000 through Dec. 2016)

- Atmospheric net irradiance: EBAF-TOA and EBAF-surface (Ed 4.0, Loeb et al. 2018; Kato et al. 2018)
- Precipitation: GPCP (V2.3, Huffman et al. 1997; Adler et al. 2012)
- Surface sensible and latent heat flux: SeaFlux (Jan 2000 through Dec. 2016, Clayson and Bogdanoff 2014).
- Divergence of dry static energy: ERAI.DSEDIV (Fasullo et al. 2018)
- Divergence of kinetic energy: ERAI.KEDIV
- Divergence of latent energy: ERAI.LEDIV
- Total energy tendency: ERAI.TETEN
- Latent energy tendency: ERAI.LETEN

Regions with a large energy imbalance

- Kinetic energy + dry static energy tendency
- Kinetic energy divergence
- + atmospheric net irradiance
- + precipitation × (latent heat of vaporization)
- Surface sensible heat flux (positive downward)

Dry static energy = sensible heat flux + potential energy Neglecting water phase change (the error in the global mean is about 0.8 Wm^{-2})

*R*_s: Surface irradiance *H*_s: Sensible heat flux *LE*: latent heat flux

Extra terms due to water mass transfer (Mayer et al. 2017)

$$\frac{1}{g}\frac{\partial}{\partial t}\int_{0}^{p_{s}} \left(c_{p}T + \Phi_{s} + k\right)dp + \frac{1}{g}\nabla_{p}\cdot\int_{0}^{p_{s}} \mathbf{U}\left(c_{p}T + \Phi + k\right)dp = \left(R_{TOA} - R_{sfc}\right) + LP - F_{SH} + c_{w}T_{s}E - c_{w}T_{p}P$$

Where

- $\mathbf{c}_{\mathbf{w}}$: Specific heat capacity of water
- L: Latent heat of vaporization
- T_s: Surface skin temperature
- T_p: Temperature of rain droplets/snow
- E: Mass flux of water vapor
- P: Mass flux of rain/snow

 $c_w T_s E$ and $c_w T_p P$ are internal energy transferred by wager vapor and precipitation Regions with large P are usually associated with smaller E Regions with small P are usually associated with larger E Even when Ts = Tp, regionally, these terms can be significant

Internal energy flux associated with water mass exchange

c_wT_sE T_s: skin temperature

-14.0 9.2 32.4 55.6 78.8 102.0 Wm-2

$c_w T_p P$ T_P : 750 hPa temperature

Net energy exchange

c_w(T_sE-T_pP)

Weak sensitivity to Tp

Global maps of residual

$\mathcal{E} = -\frac{1}{g} \frac{\partial}{\partial t} \int_0^{p_s} \left(c_p T + \Phi_s + k \right) dp - \frac{1}{g} \nabla_p \cdot \int_0^{p_s} \mathbf{U} \left(c_p T + \Phi + k \right) dp + \left(R_{TOA} - R_{sfc} \right) + LP - F_{SH}$

Negative area

- Precipitation is too small
- Divergence is too large
- Radiative cooling is too large

Global map of residual with energy flux with mass transfer

Negative area

- Precipitation is too small
- Divergence is too large
- Radiative cooling is too large

Time series of residual

Anomaly time series of energy budget balance residual

No significant trend in the time series of atmospheric energy budget residual averaged between 30°N to 30°S

Summary and future

- Revised atmospheric energy balance
 - Included internal energy transport associated with water mass transport
- Larger negative residuals appear over regions with heavy precipitation
- Positive residuals appear over stratocumulus regions
- Needs further consistency check with dry static energy divergence
- Investigate relationship with regional number of deep convective cloud occurrence

Surface downward irradiance validation

Downward Shortwave irradiance

Downward longwave irradiance

