Temporal variability of atmospheric column energy balance residual

Seiji Kato1, Norman G. Loeb1, John Fasullo2, David A. Rutan3, and Fred. G. Rose3

1NASA Langley Research Center
2National Center for Atmospheric Research
3Science System & Applications Inc.
Current status of satellite based surface energy balance residual in Wm$^{-2}$

Surface: $344-398-23-75+189-22=15$ Wm$^{-2}$ (depending on data sets used)
Ocean heating rate: 0.53 to 0.75 Wm$^{-2}$ (Lyman et al. 2010 Nature)
 0.4 - 0.6 Wm$^{-2}$ in 0 to 2000 m layer (Roemmich et al. 2015)
 0.64+0.44 Wm$^{-2}$ for the entire column (Llovel et al. 2014)
Objective of this study

• To find where large energy balance residuals exist.
• To examine regional residuals with newer versions of data products.
 • Top-of-atmosphere and surface radiation products (EBAF-TOA and –surface) were revised from Edition 2.8 to Edition 4.0
 • Precipitation data product (Global Precipitation Climatology Project) was revised from Version 2.2 to 2.3.
 • Dynamical energy transport computed from ERA-Interim is revised.
 • Seaflux data product was extended through December 2016.
• How do the energy balance residual vary temporally and spatially?
• What is needed to reduce the residual.
Testing atmospheric energy balance using observations
Data source (March 2000 through Dec. 2016)

• Atmospheric net irradiance: EBAF-TOA and EBAF-surface (Ed 4.0, Loeb et al. 2018; Kato et al. 2018)
• Precipitation: GPCP (V2.3, Huffman et al. 1997; Adler et al. 2012)
• Divergence of dry static energy: ERAI.DSEDIV (Fasullo et al. 2018)
• Divergence of kinetic energy: ERAI.KEDIV
• Divergence of latent energy: ERAI.LEDIV
• Total energy tendency: ERAI.TETEN
• Latent energy tendency: ERAI.LETEN
Regions with a large energy imbalance

Atmospheric energy balance (Trenberth and Stepaniak 2003)

\[-\left[\frac{\partial (K_E + S_H + \Phi_s + L_E)}{\partial t} \right] - (R_T - R_s) + H_s + LE + \nabla_p \cdot (F_k + F_{DE} + F_{LE}) \right] = 0\]

Latent heat release by water

\[-\left[\frac{\partial L_E}{\partial t} + LP + LE + \nabla_p \cdot F_{LE} \right] = 0\]

- Kinetic energy + dry static energy tendency
- Kinetic energy divergence
+ atmospheric net irradiance
+ precipitation × (latent heat of vaporization)
- Surface sensible heat flux (positive downward)

Dry static energy = sensible heat flux + potential energy
Neglecting water phase change (the error in the global mean is about 0.8 Wm$^{-2}$)
Extra terms due to water mass transfer (Mayer et al. 2017)

\[
\frac{1}{g} \frac{\partial}{\partial t} \int_0^{\rho_s} \left(c_p T + \Phi_s + k \right) dp + \frac{1}{g} \nabla_p \cdot \int_0^{\rho_s} \mathbf{u} \left(c_p T + \Phi + k \right) dp = \left(R_{TOA} - R_{sfc} \right) + LP - F_{SH} + c_w T_s E - c_w T_p P
\]

Where
\(c_w \): Specific heat capacity of water
\(L \): Latent heat of vaporization
\(T_s \): Surface skin temperature
\(T_p \): Temperature of rain droplets/snow
\(E \): Mass flux of water vapor
\(P \): Mass flux of rain/snow

\(c_w T_s E \) and \(c_w T_p P \) are internal energy transferred by wager vapor and precipitation
Regions with large \(P \) are usually associated with smaller \(E \)
Regions with small \(P \) are usually associated with larger \(E \)
Even when \(T_s = T_p \), regionally, these terms can be significant
Internal energy flux associated with water mass exchange

\[c_w T_s E \quad T_s: \text{skin temperature} \]

\[c_w T_p P \quad T_p: 750 \text{ hPa temperature} \]
Net energy exchange

\[c_w(T_s E - T_p P) \]

Weak sensitivity to Tp
Global maps of residual

- Precipitation is too small
- Divergence is too large
- Radiative cooling is too large

\[\varepsilon = -\frac{1}{g}\frac{\partial}{\partial t}\int_0^{p_s} (c_p T + \Phi_S + k)dp - \frac{1}{g} \nabla_p \cdot \int_0^{p_s} \mathbf{U}(c_p T + \Phi + k)dp + (R_{TOA} - R_{Sfc}) + LP - F_{SH} \]
Global map of residual with energy flux with mass transfer

\[\mathcal{E} = -\frac{1}{g} \frac{\partial}{\partial t} \int_0^{p_s} \left(c_p T + \Phi_s + k \right) dp - \frac{1}{g} \nabla_p \cdot \left(\int_0^{p_s} \mathbf{U} \left(c_p T + \Phi + k \right) dp + (R_{TOA} - R_{Sfc}) + LP - F_{SH} + c_w(T_s E - T_p P) \right) \]

- Negative area
- Precipitation is too small
- Divergence is too large
- Radiative cooling is too large
Time series of residual

![Graph showing time series of residual with two lines representing different latitude ranges: 30°N-30°S (red) and 60°N-60°S (blue). The x-axis represents time (Year) from 2001 to 2015, and the y-axis represents residual (Wm⁻²).]
Anomaly time series of energy budget balance residual

No significant trend in the time series of atmospheric energy budget residual averaged between 30°N to 30°S
Summary and future

• Revised atmospheric energy balance
 • Included internal energy transport associated with water mass transport
• Larger negative residuals appear over regions with heavy precipitation
• Positive residuals appear over stratocumulus regions
• Needs further consistency check with dry static energy divergence
• Investigate relationship with regional number of deep convective cloud occurrence
Surface downward irradiance validation

Downward Shortwave irradiance

Downward longwave irradiance