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Human impacts from expansion of agriculture and infrastructure have significantly (>50%)
transformed the natural features of the land surface

Land surface models :

fairly utopian; hard to

realistically represent
subjective practices

Remote sensing:
practical method to
observe these
‘unmodeled’ features




Using irrigation as an example of a human engineered, often unmodeled process ....

1. Can modern soil moisture remote sensing datasets detect such features?

2. Are the DA methods effective in incorporating such signals into the models?

Kumar, S.V. et al. (2015), Evaluating the utility of modern soil moisture remote sensing retrievals over irrigated areas and the suitability of data assimilation
methods for incorporating unmodeled artifacts, HESS, 19, 4463—4478.
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Irrigation “hot-spots” in the U.S
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MODIS-based irrigation intensity map (Ozdogan & Gutman, 2008)

Surface soil moisture (m3/m3)

An idealized simulation of irrigation in the LSM
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SIM1 - model without irrigation; SIM2 — model with irrigation
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Compare the PDF of the satellite soil moisture to that of the model without irrigation — If the PDFs are similar at an irrigation
hot-spot, it is an indication that satellite data is not doing a good job of detecting irrigation

In other words, comparison of the PDFs can be used as a first order check for the ability of these datasets to detect irrigation
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A two-sample Kolmogorov — Smirnov (K-S) test is used to
quantitatively compare the PDFs

Cumulative Probability
o
(o))

04
K-S distance (D) measures the distance between the PDFs.
02 Values closer to zero indicate that the distributions are
o - 0 ; ) similar; larger values of D indicate locations where the
X PDFs differ

D, = max|F(x) — G(x)|




ECV shows the lowest D values
(possibly because ECV was
generated by CDF matching soil
moisture estimates from different
sensors to GLDAS Noah)

ECV
ASCAT

Larger differences seen with
other sensors — a mix of biases
from instrument noise, retrieval
algorithm errors and unmodeled
observational processes
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Larger D values in eastern
Nebraska — possible signal of
irrigation

Signal of urban areas — Dallas,
Houston

AMSRE

Strong signal of vegetation
density in the eastern U.S.

AMSR?2

WindSAT
SMOS

Low D values in the SMOS
comparison over Nebraska —an
indication that SMOS retrievals
are not doing a good job at
detecting irrigation




Normalized soil moisture time series

averaged over the irrigation hot-spots
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ASCAT time series shows better agreement with the LSM with
irrigation time series in the summer and fall months (Nebraska,
Lower Mississippi); No such distinct contrast in the central California
valley.

AMSR2 and SMOS time series show better agreement with LSM
without irrigation

The skill of AMSR2 and SMOS retrievals are low in detecting
irrigation whereas ASCAT retrievals are somewhat effective in
detecting these features
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If unmodeled processes such as irrigation are present in satellite retrievals, can we represent them
through data assimilation?

Data assimilation methods are primarily designed to work with random errors.
Proper treatment of biases is important for the success of data assimilation.

If unmodeled processes (irrigation) are the major source of biases, are the typical
bias mitigation strategies in DA systems appropriate?
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In bias-blind DA systems, observations (yk) and model forecasts (Hk:[;z_) are expected to be unbiased
relative to each other.

There are two choices for bias correction:

 Rescale observations into the model climatology so that the innovations are computed in the
climatology of Hyz!~
« Standard normal deviate scaling, CDF matching
« Compute the innovations in the observation space by having an operator ( H;) that translates

the model states into the observation space.
* Trained forward models (RTMs, ANNSs)




Surface soil moisture (m3/m3)

“Bias-blind” DA strategies
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Spurious statistical artifacts introduced in the lumped
CDF matching approach, which are reduced when CDF
matching is more finely temporally resolved

Surface soil moisture (m3/m3)

all seasons lumped together)

Lumped CDF matching (CDFs computed using all years and

Monthly CDF matching (CDFs computed separately for each

month)
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Do these bias correction strategies work when the model background is the
major source of biases?

Synthetic DA experiment

Assimilate DA-NOBC - assimilate observations directly
Simulate the Generate observations without any bias correction
“Control” run (Noah “observations” using DA-CDFL — assimilate by rescaling
LSM forced with 0.02 m3/m3 different bias observations using lumped CDF matching
NLDAS2 and gaussian noise correction DA-CDFM — assimilate by rescaling
irrigation simulated) Masking for strategies observations using monthly CDF matching
dense vegetation, into an OL DA-ANN —assimilate raw observations using
rain/snow events configuration trained ANN as a forward operator

Compare the DA run against the
Control run
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* DA runs with bias correction do not incorporate the wet signal of irrigation!

* The size of the innovations remain small in these runs as the anomalous wet signal is
treated as a bias artifact and removed in the DA system

* The standard bias correction strategies make no distinction of the source of the
biases. The signals from unmodeled processes are therefore, excluded




* The deviations from the standard normal N(0,1) of the normalized innovations are usually used
to infer the optimality of the DA configuration.
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* DA-NOBC shows the largest deviation from N(0,1), indicating the presence of bias
* Other DA integrations show close to optimal behavior

* Reliance on these diagnostics could be misleading if unmodeled processes are the
source of the bias.




Summary and Conclusions

Simulating subjective practices such as irrigation is inherently hard to do in
conceptual models. Remote sensing and data assimilation are practical ways to
incorporate these unmodeled features.

< The skill of the soil moisture retrievals, however, must be improved to
effectively monitor such human engineered processes.

LDA methods must adapt if we are to represent unmodeled processes on the
land surface through data assimilation.

Challenge in LDA systems 1s to understand the source of the biases. Focus on
understanding and separating systematic errors from unmodeled processes
and other sources such as retrieval algorithm errors, instrument errors is
needed.



