Recent trends in precipitation, temperature and stream flow extremes – from gauges to reanalysis to climate models – impact of spatial scale F.P. Brissette, J-L Martel, V. Bertrand, M.Vandal, R.Arsenault École de technologie supérieure, U. of Québec, Montreal

Why?

MAIN OBJECTIVE

Estimate recent hydroclimatic trends to help decisions makers in adopting relevant vulnerabilty-impact-adaptation solutions

Challenges

 Difficulties in adopting a relevant reference dataset
Large variability in spatial and temporal coverage of observations
Separating anthropogenic trends from natural (internal) climatic variability

Traditional approach

Fig. 1. Trends in annual streamflow for four different periods (trends are given in standard deviations per year).

Stahl, K., et al. "Streamflow trends in Europe: evidence from a dataset of near-natural catchments." *Hydrology and Earth System Sciences* 14 (2010): p-2367.

Vincent, L. A., & Mekis, E. (2006). Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. *Atmosphere-Ocean*, 44(2), 177-193.

Temporal and spatial coverage

Martel, Jean-Luc, et al. "Role of Natural Climate Variability in the Detection of Anthropogenic Climate Change Signal for Mean and Extreme Precipitation at Local and Regional Scales." *Journal of Climate* (2018).

1979-2013 trends RX1-Day

1979-2013 trends RX1-Day

1979-2013 trends RX1-Day

rotar artificar proorpriation

Latitude averaged total annual precipitation

Trends 1979-2016 JJA-PRCPTOT

ERA

CRU

Trends 1979-2016 RX1Day ERA-I

Tendance Précipitation Journalière Maximale Annuelle (% / MoyPeriode)

Trends 1979-2016 Runoff ERA-I

Conclusions

- A lot to learn from ESM/RCM large ensembles with respect to our ability to detecting a significant trend
- Reanalysis appears to be robust for trend detection
- Signal to noise ratio is much larger for precipitation than temperature
- Signal to noise ratio is much larger for extremes than mean values
- Internal variability increases when the spatial and temporal resolutions increase
- Trend detection better done at the regional scale

annual T

ERA-I

CRU

Trends 1979-2016 PRCPTOT

Tendance Précipitation Annuelle (% / MoyPeriode)

Tendance Philopitation Totale Annuelle CRU (%)

CRU

ERA

Trends 1979-2016 largest annual value

Tendance Température Maximale Annuelle (°C/y)

ERA-I Tmax

Tendance Température Minimale Annuelle (°C/y)

ERA-I Tmin

$\mathbf{T} = \mathbf{T} =$

Trends 1979-2016 DJF-PRCPTOT

-5% (38 yrs)

ERA

CRU

$\mathbf{T} = \mathbf{T} =$

Tendance Phicipitation Totale Annuelle CRU (%)

CRU

ERA

NWS Weather stations

Hijmans et al. (2005)