

Climate extremes in the key wheat producing regions of the world

Andrea Toreti¹, Ottmar Cronie² and Matteo Zampieri¹

1 European Commission, Joint Research Centre 2 Umea University

Canmore 9 May 2018

Why wheat?

Wheat is one of the most important crop of the world with an about 2.2 million km² total harvested area and a production of 750 MTons in 2016

Source: Zampieri et al. 2017

Wheat yield and climate extremes

Main climate extremes affecting wheat yield when occurring in critical phenological phases

Heat stress

Drought

Water excess

Wheat yield and climate extremes

Combined Stress Index

CSI combines crop/region specific Heat Wave Magnitude Index daily HWMId and the

Standardised Precipitation Evapotranspiration Index SPEI

Source: Zampieri et al. 2017

Extremes - when and where

Severe large-scale extreme events: heat stress and drought affecting at least 20% of the wheat area in key region

Intensity and occurrence

We do not usually focus on the occurrence

$$\mathbb{P}(X > u)\mathbb{P}(X > y|X > u)$$

Assumed to be homogeneous-Poisson, i.e.

events occur independently with a constant rate

modelled as GPD

Is the Poisson assumption always valid?

No. In many cases we still apply the previous model by de-clustering and still assuming constant rate

Multivariate

Multi-type extremes acting in a spatiotemporal domain

- Do extremes in different regions occur independently?
- Are different types of extremes occurring in the same region independent?
- Have these extremes a constant rate?

The proposed approach

Inhomogeneous Marked Temporal Point Process offers the flexibility we need to address these questions

$$Y = \{(T_i, M_i)\}_{i=1}^N = \{(T_i, (R_i, C_i))\}_{i=1}^N \subset \mathbb{R} \times \mathcal{R} \times \mathcal{C}$$

The process is assumed to be simple, continuous in time and discrete in the marks.

The intensity function is time-dependent

Intensity

Random number of events occurring in a set A

$$Y(A) = |\{i : (T_i, R_i, C_i) \in Y \cap A, A \subset \mathbb{R} \times \mathcal{R} \times \mathcal{C}\}|$$

The intensity function is thus given by

$$\mathbb{E}\{Y(A)\} = \sum_{r \in A_2} \sum_{c \in A_3} \int_{A_1} \rho(t, r, c) dt \quad A = A_1 \times A_2 \times A_3$$

that can be estimated with the Kernel-based approach of Cronie and Van Lieshout 2016

Heat stress

Estimated intensity
function for the heat stress
events

How to measure the interaction

Marked inhomogeneous J function

$$J_{B_2,D_2}(d|B_1,D_1) = \frac{1 - G_{B_2,D_2}(d|B_1,D_1)}{1 - F_{B_2,D_2}(d)}$$

$$F_{B_2D_2}(d) = 1 - \mathbb{E}\left[\prod_{\substack{(T_i, R_i, C_i) \in Y \cap [s-d, s+d] \times B_2 \times D_2}} \left(1 - \frac{\bar{\rho}_{B_2, D_2}}{\rho_{R_i, C_i}(T_i)}\right)\right]$$

$$1 - G_{B_2}^{D_2}(d|B_1, D_1) = \frac{1}{\#B_1 \# D_1} \sum_{r \in B_1} \sum_{c \in D_1} \mathbb{E} \left\{ \prod_{\substack{(T_i, R_i, C_i) \in Y \setminus \{(s, r, c)\} \cap [s - d, s + d] \times B_2 \times D_2}} \left(1 - \frac{\bar{\rho}_{B_2, D_2}}{\rho_{R_i, C_i}(T_i)} \right) \right\}$$

J = 1 Poisson, J > 1 inhibition, J < 1 clustering

An example

Estimated J-function for heat stress events occurred in India and China.

The bold line denotes the median of the ensemble.

Estimated J-function for heat stress events occurred in India and the EU.

The bold line denotes the median of the ensemble.

Global heat stress events

Summary of the analysed interaction of heat stress events in the key regions

Conclusions

- Independence is not always a valid assumption
- Neither homogeneity
- Taking into account the interaction of large scale extremes is essential in impact and risk assessment
- Different spatial thresholds should be tested
- Higher-temporal resolution extremes
- · The analysis of the J-function has a certain degree of subjectiveness

Thanks

Questions?

You can find me at andrea.toreti@ec.europa.eu

