

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Top-down vs. bottomup approach in compound event research

The Role of Atmospheric Rivers in compound events along the Dutch coast

GEWEX Open Sciences Conference 2018

8 May 2018

N. Ridder, H. de Vries & S. Drijfhout

Concept

(Hazeleger et al., Nat. Clim. Change, 2017)

Top-down

Future conditions are mapped using a scenario framework

not every extreme climate variable also causes extreme impact

Bottom-up

Focusing on one specific impact (or hazard) and aims to use "Storytelling"-approach

not every extreme impact is caused by extreme value in driver

Concept

(Hazeleger et al., Nat. Clim. Change, 2017)

Top-down

atmospheric river

Bottom-up

Future conditions are mapped using a scenario framework

not every extreme climate variable also causes extreme impact

Focusing on one specific impact (or hazard) and aims to use "Storytelling"-approach

not every extreme impact is caused by extreme value in driver

coinciding heavy precip. & high water levels

Aim

- Demonstrate the strengths and limitations of both the topdown and bottom-up approach and
- Highlight their complementing nature essential for the thorough investigation of compound events

Atmospheric rivers (ARs)

- ARs are long filament of high water vapour transport typically located in the lower troposphere
- Their landfall (LF) had been shown to be associated with <u>heavy</u> <u>precipitation and strong winds</u> (Waliser & Guan, Nat. Geosci., 2017)

Motivation for AR example

Hypothesis:

Landfall of ARs has the potential to be associated to local compound extremes consisting of <u>precipitation</u> and <u>storm</u> <u>surge</u>

The Netherlands

Method

Data sets:

(1 Jan 1979 – 31 Dec 2015)

ERA-Interim

- Total water levels (h) from WAQUA/DCSMv5
- AR database derived from integrated vapour transport (Guan & Waliser, J. Geophysical Res., 2015)

EOBS

 daily local precipitation (P) over specific regions

Study area:

Definition of compound events (CEs)

An event is considered to be <u>compound</u> if the centred <u>3-day</u>

<u>precipitation sum</u> and the <u>maximum total water level</u> within these 3 days are both bigger than their respective <u>95th percentile</u>

Top-down approach

Starting from the atmospheric phenomenon

→ AR landfall

Reminder: Joint density distributions

Joint density distributions during AR LF in NL

Joint density distributions andfall events) (325)

Bottom-up approach

Starting from the compound events

Mean conditions during <u>all compound events</u> at Den Helder in winter six months

Compound events at Den Helder without AR landfall in NL

Compound events at Den Helder without AR landfall* in Europe (UK, E&P, FR, NL, D or DK)

17

Compound events at Den Helder <u>without ARs</u> over NL and without LF in Europe within 24

-18

-12

hPa

12

18

Joint density distributions

Summary and conclusions

AR landfall in the NL

- show an affinity to higher precipitation and water levels with a positive correlation between the two variables
- can be associated with past CEs, however a small subset of local AR LF events only
- are associated with only ~10% of past CEs
- are not necessary requirement for an AR systems to cause CEs
- only a small number of CEs (10 15%) have occurred without the presence of AR over Europe

Bottom-

Thank you!

References

Guan, B., & Waliser, D. E. (2015). Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. Journal of Geophysical Research: Atmospheres, 120(24), 12514-12535.

Hazeleger, W., Van den Hurk, B. J. J. M., Min, E., Van Oldenborgh, G. J., Petersen, A. C., Stainforth, D. A., ... & Smith, L. A. (2015). Tales of future weather. Nature Climate Change, 5(2), 107.

Waliser, D., & Guan, B. (2017). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10(3), 179.

AR and SLP daily mean climatology

During the study period 4,315 days with an AR over NL

→~1 AR/3 days

Definition of compound events (CEs)

Definition needs to take into account:

- 1. Time constraint that is:
 - a) long enough local hydrological processes to take place which allow interactions between precipitation & coastal water level
 - b) shorter than the time scale at which larger river catchment processes become relevant
- Threshold considering relatively short study period of 37 years, i.e. limited data availability

Results

Relating AR landfall with precipitation (P) & water levels (h) (mean over all LF events)

Landfall of AR systems have the potential to cause compound events