The role of the lake-land breeze circulation in the formation and propagation of storms over Lake Victoria

Beth Woodhams¹, Cathryn Birch^{1,2}, John Marsham^{1,3}, Caroline Bain², Todd Lane⁴

- 1 Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, UK
- 2 Met Office, Exeter, UK
- 3 National Centre for Atmospheric Science, School of Earth and Environment, University of Leeds, UK
- 4 School of Earth Sciences, University of Melbourne, Australia

Lake Victoria

Motivation

Lake Victoria

35 million people depend on Lake Victoria to survive

200,000 fishermen use the lake

5000 deaths on the lake each year

Surrounding land used for agriculture

Background

Background

UM Nesting Suite*

Driving model: UM global mode (re-run from archived analysis files)

2 resolutions: 4.4km, 1.5km SINGV2.1, with Aranami (2015) moisture conservation

72 hour simulations

Output every hour

* The authors wish to acknowledge to Stu Webster (Met Office)

Case Study 1: Dry Period ► July 2015 (dry season) Case Study 2: Large Storm ► May 2015 (Long Rains) Case Study 3: Small Storm ► July 2016 (dry season)

19:00 LT

01:00 LT

2015/07/09 13:00

Case Study 1: Dry Period ► July 2015 (dry season) Case Study 2: Large Storm ► May 2015 (Long Rains) Case Study 3: Small Storm ► July 2016 (dry season)

UNIVERSITY OF LEEDS

2015/05/06 15:30

19:00 LT

Case Study 1: Dry Period ► July 2015 (dry season) Case Study 2: Large Storm ► May 2015 (Long Rains) Case Study 3: Small Storm ► July 2016 (dry season)

UNIVERSITY OF LEEDS

2016/07/29 02:30

Lake-land Breeze Circulation

- -Shows characteristics of textbook lake-land breeze circulation
- -Asymmetry due to prevailing south-easterly flow and downslope flow from the eastern mountains

Large storm

- Initiates onshore as lake-breeze front collides with downslope winds
- -Moves offshore with the land-breeze
- -New convection is initiated on the leading edge of the storm due to the land-breeze from the western edge of the lake
- -High moisture availability

Small Storm

- -Initiates over the lake, where the land-breeze from the east meets moist anomalous north-westerly flow
- Storms propagate along line of convergence

Two very different storms:

Lake-land breeze circulation plays an important role in both

Further Work

How representative are the two case study storms?

Using satellite observations and storm tracking, classify storms by e.g.

- location of initiation
- size
- track

Investigate correlations of storm type with factors such as

- Large-scale flow
- Time of year
- Atmospheric wave-modes
- Teleconnections

Using operational forecast model, investigate predictability of different storm types

Questions?

Acknowledgements

Australian Bicentennial Scholarship (Menzies Centre, King's College London) and RMetS Rupert Ford Award for funding research visit to University of Melbourne