Evaluating the contribution of land-atmosphere feedbacks to heat extremes in CMIP5 models

Anna Ukkola
Australian National University

A. Pitman, M. Donat, M. De Kauwe and O. Angélil
Motivation

- Hot extremes increase faster than the mean
- Land surface drying in hotspot regions

Donat et al. GRL (2017)
Motivation

- Hot extremes increase faster than the mean
- Land surface drying in hotspot regions

- How well do models capture these processes?

Donat et al. GRL (2017)
Co-variation of hot and dry extremes

- Land-atmosphere feedbacks can amplify heat extremes
- e.g. Europe 2003

Alexander, 2010
Role of aridity

Wet regime

- Positive temperature / radiation anomaly
- Soil moisture deficit
- Evapotranspiration

Dry & transitional regime

- Positive temperature / radiation anomaly
- Soil moisture deficit
- Evapotranspiration

Land impacts atmosphere via reduced ET and concurrent increase in sensible heat and temperature.

Sippel et al. ESD (2017)
Methods

- 2.5% hottest days of year
- Evaporative fraction on the day

\[EF = \frac{\text{latent}}{\text{latent} + \text{sensible}} \]
Methods

- 2.5% hottest days of year
- Evaporative fraction on the day
 \[EF = \frac{\text{latent}}{\text{latent} + \text{sensible}} \]
- Group by aridity (wet, transitional, dry)
Methods

- 2.5% hottest days of year
- Evaporative fraction on the day
 \[EF = \frac{\text{latent}}{\text{latent} + \text{sensible}} \]
- Group by aridity (wet, transitional, dry)
- Can models capture the rel. ship between \(T_{\text{max}} \) and EF?
Observed relationship

Wet
- Slope = 0.21, n = 703

Transitional
- Slope = -9.29*, n = 252

Dry
- Slope = -7.12*, n = 246

- Maximum temperature (°C)
- Evaporative fraction (-)
Transitional and dry environments

Observations

Slope = -9.29, n = 252

hotter

drier

Transitional

Slope EF-Tmax (°C)

Dry

Obs range Model
Wet environments

Observations

Slope = 0.21, n = 703

Wet

Slope EF-Tmax (°C)

Obs range Model
Biases in land surface models

Latent heat

Sensible heat

Palang (Ev broad)

Evapotranspiration (mm/day)

Sensible heat (W m$^{-2}$)

1 Jan 02 1 Jul 02

Observed CABLE–SLI CABLE–GW CABLE–2.0 CABLE–GW
JULES–3.1 JULES–altP Mosaic CHTESSEL COLASSiB
ISBA–3L ISBA–dif NOAH 2.7 NOAH 3.2 NOAH 3.3 ORCHIDEE

Ukkola et al. ERL (2016)
Why some models over-amplify T_{max}?

Strong amplification due to?

1. Low latent heat (on the day / during warm season) \times
Why some models over-amplify T_{max}?

Strong amplification due to?

1. Low latent heat (on the day / during warm season) \times
2. Different seasonality \checkmark
Why some models over-amplify T_{max}?

Strong amplification due to?

1. Low latent heat (on the day / during warm season) ✗
2. Different seasonality ✓
3. High spring LAI ✗
Conclusions

- Most models capture obs in dry & transitional zones
- But many overestimate land surface feedbacks in wet regions
Conclusions

- Most models capture obs in dry & transitional zones
- But many overestimate land surface feedbacks in wet regions
- Consistent with offline LSM biases
Conclusions

- Most models capture obs in dry & transitional zones
- But many overestimate land surface feedbacks in wet regions
- Consistent with offline LSM biases
- What does this mean for projections of heat extremes?
Email: anna.ukkola@anu.edu.au
Observations by site

a) Wet

Slope = 0.51, n = 754

b) Transitional

Slope = -9.29*, n = 252

c) Dry

Slope = -7.12*, n = 246