

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Multi-Sensor Ground-based Microwave Snow Experiment at Altay, CHINA

Jiancheng Shi¹, Chuan Xiong¹, Jinmei Pan¹, Tao Che², Tianjie Zhao¹, Haokui Xu¹, Lu Hu¹, Xiang Ji¹, Shunli Chang³, Suhong Liu³

 ¹State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth and Beijing Normal University
² Northwest Institute of Ecology and Environmental Resources
³Xinjiang University

Ground Based Snow Experiment

Purposes:

- Time series active and passive microwave remote sensing signal of snow and frozen soil
- Modeling and retrieval algorithm tests for WCOM
- Snow melting model development
- Time: Oct. 2017 to Mar. 2018
- Location:
 - National Reference Meteorological Station at Altay, Xinjiang, China

Landuse map 2010 from the National Geomatics Center of China (NGCC)

Meteorological Station Measurements

- Hourly Air temperature, Relative Humidity, Wind Speed, Precipitation (include snowfalls)
- Net Radiation, Solar Radiation
- Near Surface Temperature (6 cm above ground)
- Daily Snow Depth
- 5-Day SWE

Field Measurements

Before the snowfalls,cut dry grass and installed soil measurement instrument

Snowpit Measurements:

- Snow Stratigraphy
- Snow Depth, SWE
- Snow Density & Snow

Temp. per 5 cm

Snow Grain size (D_{max})
www.radi.cas.cn

EM-50 Measurements:

Soil Moisture & Temperature at -2, -5,-10 cm

Snow Measurements

Georeferenced 2-mm Grids & Snow Particles

SNTHERM-simulations using Altay meteorological data

• Model inputs: T_{air}, Prep, Downward long & shortwave radiation, RH, Wind speed

- Bottom grain size exponentially grows and stops around at 2 mm
- Bulk grain size decreases when snowfall occurs

Altay Reference Meteorological Station Field GBSAR: X (7.5-12.5 GHz), Ku (11.5-16.5 GHz), Ka (15.5-20.0 GHz) (VV/HH/VH/HV)

Radiometer_1: " 1.4, 6.925, 10.65 GHz (V/H) Radiometer_2: 1.4, 18.7, 36.5 GHz (V/H)

Corner

Reflector

EM-50 sensor: 3-layer soil T & moisture

> Snowpit Digging Field

Ground Instruments

GBSAR Calibration

 Ground based SAR polarimetric calibration procedure from:

K. Sarabandi, F. T. Ulaby and M. A. Tassoudji, "Calibration of polarimetric radar systems with good polarization isolation," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 28, no. 1, pp. 70-75, Jan 1990.

- two trihedral + one dihedral, carefully leveled and centered to antenna. Antennas are pointing vertically down.
- Trihedral radar responses were measured at anechoic chamber.
- Using time (range) gating to find the radar response of trihedral or dihedral.
- Background scattering is subtracted using background measurement.

Radiometer Calibration

• For C - Ku band

• For L band

using a set of scan angles for sky tipping

using a single scanning point

Four unknown parameters: G, α, Tsys, Tn

Time-series Measured Sigma0 at 40°

- Sensitivities of frequency dependence of snow volume backscattering to grain size and mass;
- Is the X-band backscattering time-series resulted from soil frozen process?
- Other possibilities?

T_B measurements at V-pol.

Comparison of Different Models

- Snow properties are used within the ground measurement range;
- Three physical based microwave snow models are compared with both Active/Passive measurements:
 - 1. MEMLS;
 - 2. DMRT/QCA Dense Media Vector Radiative Transfer Model
 - 3. VRT-Bic-Bicontinue Vector Radiative Transfer Model

(1) Model Comparisons – MEML

Passive Brightness Temperatures

Model (1): MEMLS3&a with Improved Born Approximation

(Matzler&Wiesmann, 1999; Proksch et al., 2005)

setting: grain diameter=1.2* [0.18+0.09*log(D_{max})]

(1) Model Comparisons – MEMLS

Radar measurements

smooth soil surface; 95% coherent component (compensate for empirical soil model error)

A adjustable parameter of "q" is used to parameterize the relationship between VH and VV www.radi.cas.cn

(2) Model Comparisons – DMRT

Passive Brightness Temperatures

Model (2) : multiple layer DMRT-QCA Inputs: snow parameters from snowpits; grain diameter = 0.25*Dmax; stickiness = 0.1

(2) Model Comparisons – DMRT

Radar measurements

Model (1): multiple layer DMRT-QCA, Oh rough surface scattering model Inputs: snow parameters from snowpits; grain diameter = 0.25*Dmax; stickiness = 0.1

DMRT-QCA model significantly underestimated the VH backscattering

(3) Model Comparisons – VRT-Bi

Passive Brightness Temperatures

Models: multiple layer DMRT-Bic

Inputs: snow parameters from snowpits; Optical grain radius= Dmax/7; b= 1.2

Match active and passive signal simultaneously !

(3) Model Comparisons – VRT-Bi

Radar measurements

Models: multiple layer VRT-Bic, Oh rough surface scattering model Inputs: snow parameters from snowpits; Optical grain radius= Dmax/7; b= 1.2

Bicontinuous model could generate much stronger VH backscattering

Match VV and VH signal simultaneously !

Summary

- Active/Passive retrieval requires the same set of snow properties. However, we showed some models all can fit the measurements, but have to use the different snow parameters.
- VRT-Bic model provide the best fits with the snow parameter
- Coherent justification may be needed for large incident angle measurements
- How many snow layers and frozen/thaw status of underground surface are important, but how?

Thanks!

Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences

Add: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China Tel: 86–10–82178008 Fax: 86–10–82178009 E-mail: office@radi.ac.cn Web: www.radi.cas.cn

(4) Need Coherent Model?

