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Background 
•  The melting of snow and glaciers in the 

HMA provides the water needs of 
approximately 1.3 billion people in the 
region.  

•  Increasing temperatures have large 
effects on the hydrologic cycle, 
influencing snowmelt, snowpack, and 
streamflow, which can impact many 
aspects of water security.  

•  However, meteorological stations are relatively sparse in HMA due to complex terrain. 
•  Precipitation can vary strongly over short horizontal distances due to orographic effects 

but high-altitude precipitation gauge networks are almost non-existent. 
•  Through the NASA HiMAT project, we attempt to quantify the regional water balance 

over HMA using land surface modeling and data assimilation.  
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Key goals 
•  Focus on the evaluation of modeling 

inputs (precipitation) and outputs 
(terrestrial water balance terms) towards 
quantifying the uncertainties in the water 
balance over HMA. 

•  Use direct and indirect evaluations to 
compare and quantify the uncertainties in 
the modeled estimates of land surface 
water balance. 

•  Model simulations are conducted using 
the NASA Land Information System (LIS; 
lis.gsfc.nasa.gov) and evaluations using 
the Land surface Verfication Toolkit (LVT). 
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A Land Data Assimilation System (LDAS) is a
computational tool that merges
observations with numerical models to
produce optimal estimates of land surface
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The overall goal of this work was to create the best available
hydrologic analysis system for South Asia.
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¾ The current implementation of the South Asia LDAS in LIS provides simulations of
the distributed water balance of South Asia at 10km spatial resolution, with higher
resolution focus regions of 5km and 1km resolution

¾The system supports a suite of advanced land surface models (NoahͲMP, Catchment
LSM, and VIC, among others).

¾ It has been tested with numerous meteorological forcing datasets (MERRAͲLand,
GDAS, TMPA etc.).

high precipitation.

9Relative bias between TRMM vs. MERRA is mostly
under 20% over India except few splotches over the
Western Ghats and over the Himalayas.

9Thus, MERRA is useful for long historical analysis.
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¾It has data assimilation capabilities that include ingesting GRACEͲderived terrestrial
water storage anomalies, MODIS snow covered area estimates, and multiple
satelliteͲderived soil moisture products.

¾South Asia LDAS also includes sprinkler irrigation and a river routing scheme
(HyMAP).
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9Water�balance�analysis�suggests�more�irrigation�demand�for�Ganges�and�Brahmaputra,�Indus�and��
Tapti�river�basins.

9 Both�Alexi�and�model�show�ET�that�appears�to�be�in�excess�of�precipitation,�implying�a�water�
deficit�in�the�Indus�basin.
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� Anomaly�has�been�calculated�based�on�the�climatology�of�1998Ͳ2014
�This�bar�graph�shows�cells�centered�around�Sukkur,�Pakistan��(West�bank�of�Indus)�(27.71N,�68.85E)

�Model�is�able�to�capture�flood�in�Indus�river�during�Aug�2010�
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9Streamflow of�rainͲfed�rivers�are�well�captured�by�model.�Better�representation�of�snow�over�the�
northern�mountains�will�enable�a�better�streamflow prediction�of�glacier�and�snowͲfed�rivers.
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Conclusions�and�Future�Scope�

Model�Latent�Heat�Flux=�Climatology�of�weekly�composite�for�each�season�
Alexi�Derived�Latent�Heat�Flux=�Climatology�of�weekly�composite�of�Atmosphere–Land�Exchange�Inverse�

(ALEXI)�model�for�each�season
Relative�Bias�of�Model�Latent�Heat�Flux=

(Model�Latent�Heat�Flux��– Alexi�Derived�Latent�Heat�Flux)�*100/�Alexi�Derived�Latent�Heat�Flux�

y
Tibetan�Plateau�etc.)

9InterͲannual variabilty is�well�captured�by�model.
9Strong�bias;�Large�difference�between�actual�and�

model�streamflow

9InterͲannual variabilty is�not�captured�always.
9Low�bias;�Small�difference�between�actual�and�

model�streamflow.

g p , p g
provide�an�insight�into�the�irrigation�water�demand.�Grace�data�assimilation�will�enable�a�better�

prediction�of�evaporative�water�demand.
9South�Asia�LDAS�is�able�to�capture�Indus�flood�during�2010�and�Uttarakhand flood�during�2013�(result�

not�shown�here).�Though�the�onset�and�intensity�of�flood�need�to�be�evaluated�with�ground�truth.�
South�Asia�LDAS�can�be�useful�in�flood�and�drought�prediction.
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humidity, surface pressure, wind, and precipitation. The
LSMs are driven with meteorological data from the
Global Data Assimilation System (GDAS), the global
meteorological weather model of NCEP (Derber et al.
1991). In addition, the precipitation inputs for the
model simulations are provided from the National Oce-
anic and Atmospheric Administration (NOAA) Climate
Prediction Center’s (CPC) operational global 2.58 5-day
Merged Analysis of Precipitation (CMAP) (Xie and
Arkin 1997), which is a product that employs blended
satellite (IR and microwave) and gauge observations.
The GDAS modeled precipitation fields are used to dis-
aggregate the CMAP fields spatially and temporally to
match the Noah model simulation resolutions. To in-
vestigate the impact of improved precipitation inputs
on the simulations, the NLDAS Phase 2 (NLDAS-2; Xia
et al. 2011) products are employed in a separate set of
simulations. The LSM simulations use a time step of
30 min and are used to generate estimates of snow con-
ditions (pixel SWE, pixel fSCA, and pixel snowdepth) for
three winter seasons, from 1 November 2007 to 1 May
2010. The model outputs are generated daily at the local
MODIS overpass time [1030 local time (LT)] for each
simulation domain.
The global, high-resolution (30-m resolution) eleva-

tion data from the Shuttle Radar Topography Mission
(SRTM; Rodriguez et al. 2005) are used to derive the
topography datasets of elevation, slope, and aspect at
1-km spatial resolution. These SRTM-based topography
datasets are used to perform the spatial downscaling
of downward shortwave fluxes, using the approach de-
scribed in section 2.

Satellite-based and in situ measurements of snow
conditions are used to evaluate the LSM simulations.
The fractional snow cover extent global 500-m product
[MODIS/Terra Snow Cover Daily L3 Global 500-m
Grid (MOD10A1) version 5] (Hall et al. 2006), based on
an algorithm of Salomonson and Appel (2004), from the
MODIS instrument on the Terra spacecraft is used as
the reference data for evaluating the snow cover simu-
lations. The MOD10A1 product is aggregated (by sim-
ple averaging) to 1-km spatial resolution for enabling
the comparisons presented in this article. In the CHR
domain, in situ measurements of SWE are available
from theNatural Resources Conservation Service (NRCS)
SnowpackTelemetry (SNOTEL)meteorological stations.
We employ these observations to evaluate the SWE fields
from the model simulations.

4. Methods

a. Evaluation of snow cover simulations using
categorical measures

Similar to the strategy followed in Dong and Peters-
Lidard (2010), categorical verification measures are used
to evaluate the snow cover simulations. Using a 2 3 2
contingency table approach (e.g., Painter et al. 2009) and
a prescribed threshold, the snow cover model output and
the MOD10A1 data are converted to a dichotomous
(‘‘yes’’ or ‘‘no’’) form. For example, if the threshold is
defined as 0.1 for fractional snow cover, then all model
fSCA outputs with values .0.1 are categorized as yes
events and all values with ,0.1 are categorized as no

FIG. 1. The two study domains with 1-km terrain elevation as the background: (left) CHR domain and (right) AFG domain. The circles in
the CHR domain represent the locations of the SNOTEL stations.
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Approach
•  Using LIS, a suite of model runs with three different LSMs (Noah33, NoahMP and Catchment) with two 

forcing inputs (MERRA2 corrected and uncorrected precipitation), over the entire HMA at 0.25 deg 
resolution was conducted (2000-2017). 

•  Hydrological (streamflow) simulations conducted with the HyMAP model.

P – ET – Q = ΔTWS   [terrestrial water balance] 

ΔTWS = ΔGW + ΔSM + ΔSWE + ΔSW 

P = precipitation
ET = evapotranspiration
Q = river discharge 

ΔTWS = change in terrestrial water storage 
ΔGW = change in groundwater storage 
ΔSM = change in soil moisture 
ΔSWE = change in snow water equivalent
ΔSW = change in surface water storage

•  Use available datasets to compare and quantify the uncertainties in the LIS-based 
estimates of water balance terms, using the Land surface Verification Toolkit (LVT)



Evaluation data
• Precipitation: 

• APHRODITE, IMD, CHIRPS
• TRMM, CMORPH
• MERRA2 (corrected, uncorrected), ERA-Interim-Land

• Evapotranspiration (ET): 
• ALEXI (Atmospheric Land Exchange Inverse Model): a thermal infrared 

based ET estimate
•   GLEAM (Global Land Evaporation Amsterdam Model): remote sensing-

based; employs the priestly taylor approach
• Runoff 
• Snow cover: 

• MODIS-based fractional snow cover estimates
• TWS: 

• Anomalies from the Gravity Recovery and Climate Experiment (GRACE)
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Comparison of Precipitation seasonality 
DJF 

•  Mostly snowfall affected by 
winter westerlies 

•  APHRODITE, CHIRPS, and 
TRMM show similar patterns, 
overall 

•  MERRA-2 uncorrected shows 
higher precipitation (snowfall) 
rate 

JJA 
•  Mostly rainfall affected by 

Indian summer monsoon 
•  Spatial patterns of all 

precipitations are similar.  
•  MERRA-2 uncorrected shows 

higher precipitation rate 
 



RMSE derived 
from 
Extended 
Triple 
Collocation

-  Extended TC – a method of simultaneous 
estimation of the error structure of related 
datasets with uncorrelated errors 

-  In the regions with higher mean 
precipitation rate, the RMSE is higher. 

-  Station datasets (APHRODITE, CHIRPS, 
IMD) show better performance than others. 

-  MERRA-2 (uncorr) shows the worst 
performance. 
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Comparison of seasonality, trends (P) 

PPT – 
mean(APHRODITE, 
CHIRPS, TRMM, 
CMORPH)	
  

Mean-monthly P	
  

West Central East 
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Evaluation of ET 

ALEXI  (Atmospheric Land Exchange Inverse model) A 
thermal infrared based ET estimate (5km) 
GLEAM (Global Land Evaporation Amsterdam model); 
remote sensing based; employs priestly Taylor approach 
 
LIS ET trends follows the MERRA2 positive trends; ALEXI 
and GLEAM do not show a prominent trend.  
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Evaluation of Runoff (Q) 
•  LIS Q trends follow 

the MERRA2 positive 
trends; not enough 
(spatially distributed) 
observational data 
available for 
comparison 

 
•  The runoff estimates 

have a dry bias in the 
model simulations 
with MERRA2 
(corrected) 

 
 



11	
  

Evaluation of Snow Cover 

•  MERRA2 (corrected) runs underestimate snow cover while MERRA2 (uncorrected) overestimate. 
•  The underestimation in MERRA2 (corrected) particularly severe in the central/east regions. 
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Evaluation of ΔTWS  

West 

Central 

East 

•  The LIS-based ΔTWS compared to a suite 
of GRACE solution (CSR, JPL, GFZ)

•  The LIS-based ΔTWS shows a positive 
trend whereas the GRACE solutions show 
a negative trend. 

•  Model uncertainty higher than the uncertainty in the GRACE solutions
•  Inconsistencies likely due to snow physics issues over glaciers; Lack of representation of 

human management impacts, etc. 
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Water balance uncertainty 
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Q Q •  Large uncertainties in precipitation 
inputs between MERRA2 corrected 
and uncorrected streams 

•  The forcing uncertainty drives the 
model output uncertainty and is a 
bigger factor than the model 
uncertainty.  
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Climatological correction of MERRA2 Precipitation 

Apply a climatological correction to MERRA2 precipitation based on 
other reference datasets (APHRODITE, CHIRPS, IMD, TRMM and 
CMORPH). 
 
The MERRA2 precip is rescaled to match the climatology of the mean 
reference product (average of the 5 datasets) using CDF matching 
(conducted at a monthly timescale). 
 
The scaled precipitation is closer to the reference ensemble mean; 
produces higher precipitation over the central and eastern domains 
than the MERRA2-corrected estimate.  
 



15	
  

DJF 
•  Scaled MERRA-2 precipitation 

estimates produce higher than 
MERRA-2 corrected. 

•  Scaled MERRA-2 similar to 
TRMM. 

•  Lower-middle region of scaled 
MERRA-2 has higher 
precipitation rate than others.  

JJA 
•  Scaled MERRA-2 produce 

higher precipitation than 
MERRA-2 corrected, which is 
more similar to APHRODITE, 
CHIRPS, and TRMM.  

 

Comparison of scaled precipitation seasonality 
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Summary 
•  Uncertainty in modeling the terrestrial water budgets over HMA is examined 

using a land surface model suite (i.e., Noah 3.3, Noah-MP 3.6 and 
Catchment F2.5) forced by MERRA2 meteorology. 

•  The uncertainty in MERRA2 precipitation inputs is the dominant factor in the 
uncertainty of water budget components; The uncorrected MERRA2 precip is 
too wet, corrected MERRA2 precip is too dry.  

•  To improve uncertainty in MERRA2 precipitation, a climatological bias 
correction scheme is developed and is being evaluated.  

•  The HiMAT project also incorporates the assimilation of passive microwave 
snow measurements (through machine learning forward operators), 
vegetation conditions and albedo. The final products will be generated at 
1km spatial resolution.  
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Evaluation of Snow Cover and SWE 
Domain-averaged snow-cover 
Large spread in snow-cover 
estimates; MERRA2(corrected) 
underestimates the snow evolution; 
MERRA2 (uncorrected) 
overestimates 
 
 
 
 
 
Domain-averaged SWE 
Runs with uncorrected precip lead to 
large spread in the modeled SWE 
with unrealistic estimates over 
Glaciers 
 
Model runs using corrected precip 
produce too little SWE 
 


