Modeling land surface processes in Tibetan Plateau and their interactions with climate at continental scales

Yongkang Xue¹ Ye Liu¹, Qian Li², Wenkai Li³, Yang Zhang³ Ismaila Diollo¹, Weidong Guo³

- 1. University of California, Los Angeles
- 2. Institute of Atmospheric Physics, CAS
- 3. Nanjing University

and many other collaborators

2018 GEWEX Science Conference, Canmore, Alberta, Canada 6–11 May 2018

I). General Characteristics of Tibetan Climate and Future Projection

Regions with strong land/atmosphere interaction

Red: spring; Yellow: Summer; Cyan: Fall; Light blue: Winter

Figure 8 The reduced absolute annual mean bias of precipitation (mm/day) simulations (or improved prediction accuracy) due to land processes in the GCM. Based on Xue et al. (2010, J. Climate)

2). Effects of Tibetan Plateau Land Surface/subsurface temperature and snow on the East, South, and Central Asian Climate

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1029/2017JD028246

Key Points:

- Possible remote effects of large-scale land surface temperature in geographical areas upstream on droughts/floods have largely been ignored
- Observations show significant lagged correlation between spring surface temperature and downstream drought-flood in North America and East Asia
- North America and East Asian modeling studies show causal relationship between spring land temperature anomaly and downstream summer drought/flood

Supporting Information:

Supporting Information S1

Correspondence to:

Y. Xue, yxue@geog.ucla.edu

Citation:

Xue, Y., Diallo, I., Li, W., David Neelin, J., Chu, P. C., Vasic, R., et al. (2018). Spring land surface and subsurface temperature anomalies and subsequent downstream late spring-summer droughts/floods in North America and East Asia. Journal of Geophysical Research: Atmospheres, 123. https://doi. org/10.1029/2017JD028246

Received 28 DEC 2017

Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream Late Spring-Summer Droughts/Floods in North America and East Asia

Yongkang Xue^{1,2}, kanaila Diallo¹, Wenkai Li^{1,3,4}, J. David Neelin², Peter C. Chu⁵, Ratko Vasic^{6,7}, Keidong Guo^{3,4}, Qian Li⁸, David A. Robinson⁹, Yuejian Zhu⁷, Congbin Fu^{3,4}, and Catalina M. Oaida²

¹Department of Geography, University of California Los Angeles, Los Angeles, CA, USA, ²Department of Atmospheric and Oceanic Sciences, UCLA, Los Angeles, CA, USA, ³Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China, ⁴Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing, China, ⁵Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA, USA, ⁶I. M. Systems Group, Inc., Environmental Modeling Center/National Center for Environmental Prediction, NOAA, College Park, MD, USA, ⁷Environmental Modeling Center/National Center for Environmental Prediction, NOAA, College Park, MD, USA, ⁸Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, ⁹Department of Geography, Rutgers University. <u>Piccataway, N1, USA</u>

Abstract Sea surface temperature (SST) variabilit precipitation, although SSTs are unable to fully predia The possible remote effects of large-scale land surface anomalies in geographical areas upstream and closer ignored. Here evidence from climate observations and of observational data using Maximum Covariance An springtime 2-m air temperature (T2 m) cold (warm) a Plateau and downstream drought (flood) events in la findings, climate models are used in sensitivity studie produce observed T2 m anomaly, to demonstrate a c spring warm T2 m/LST/SUBT anomalies in western U. Plains and adjacent regions and between spring cold the severe 2003 drought south of the Yangtze River r America are associated with a large-scale atmospheri LST/SUBT anomaly region. The effects of SST in these

Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2017JD028246

Figure 13. Schematic diagram describing the processes associated with the impact of LST and SUBT anomalies affecting downstream precipitation.

Observed May land surface temperature (LST) difference (K) and June precipitation difference (mm day⁻¹) between coldest and warmest years (based on Tibetan Plateau LST)

The years with temperature anomalies larger than 0.5 Standard Dev. over 90E-102E and 28N-39N Warm: 1994, 1995, 1998, 2007, 2008, 2009, 2010, 2011,2012 Cold: 1980, 1982, 1984, 1987, 1990, 1992, 1993, 2001, 2002, 2003

Figure 2. MCA over East Asia. (a) and (b) Spatial patterns of MCA1 for May T2m over Tibetan Plateau and June precipitation over East Asia, respectively. (c) PC1 of MCA during 1980-2015 for May T2m (blue line) and June precipitation (red line). (d) Scatter plots of March-April-May T2m (in K) over Tibetan Plateau (28–37°N, 92–102°E) and June-July precipitation (in mm/day) over Yangtze River region (29–32°N, 112–121°E). In (d), black lines indicate means; green (red) dashed lines denote +/ -1 (+/-0.5) standard deviation boundaries for precipitation (T2m). (a), (b) & (c) are expressed in normalized unit.

2003 Case Study

JOURNAL OF CLIMATE

VOLUME 28

TABLE 2. Drought years over East Asia from 1900 to 2010. The events from 1900 to 2006 were obtained from the appendix table of Zhang et al. (2009).

Year(s)	Region	Impacts
2003	Drought over the south of the Yangtze River and south China in autumn	Resulted in 100×10^{6} kg crop yield losses and CNY 5.8 billion economic losses.

3380

The dry and cracked river bed in 2003 in Hangzhou, East China's Zhejiang Province. [newsphoto.com.cn] The drought, which started in June and intensified in July, is the worst in the last three decades (China Daily 2003-08-14)

June 2003 Precipitation Anomaly

A view of the swollen Yangzi river in Nanjing, on July 18, 2003,

Observed land surface temperature (LST) and SST anomalies

May 2003 LST Anomaly

LST: Land surface temperature; SUBT: Subsurface temperature

The stippled areas denote statistical significance at the $\alpha < 0.1$ level of t-test values. The gray shaded areas indicate no observational data. Unit: mm/day

Figure 7. (**a**) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau at the first time step of the model simulation between Case 2003_EA and Case noSUBT_EA. (**b**) Observed May 2m-temperature (T2m) anomaly between 2003 and the reference. (**c**) GFS-simulated May T2m difference between Case 2003_EA and Case noSUBT_EA.

Using the Corresponding GCM outputs as lateral Boundary conditions

The stippled areas denote statistical significance at the $\alpha < 0.1$ level of t-test values. The gray shaded areas indicate no observational data. Unit: mm/day

Area-Averaged Obs. and Simulated Precipitation (mm/day) Difference

This relationship has been found beyond East Asia

Observed May land surface temperature (LST) difference (K) and June precipitation difference (mm day⁻¹) between coldest and warmest years (based on Tibetan Plateau LST)

The years with temperature anomalies larger than 0.5 Standard Dev. over 70E-85E and 30N-39N Warm: 1981, 1990, 1999,2000, 2001, 2002, 2006, 2007, 2008, 2010, 2011 Cold: 1982, 1983, 1985, 1986, 1987, 1989, 1991, 1992, 1993, 1996, 1997, 2003, 2005

Observed May land surface temperature (LST) difference (K) and June precipitation difference (mm day⁻¹) between coldest and warmest years (based on Tibetan Plateau LST)

The years with temperature anomalies larger than 0.5 Standard Dev. over 70E-85E and 30N-39N Warm: 1981, 1990, 1999,2000, 2001, 2002, 2006, 2007, 2008, 2010, 2011 Cold: 1982, 1983, 1985, 1986, 1987, 1989, 1991, 1992, 1993, 1996, 1997, 2003, 2005

Winter circulation and Tibet snow days

(a) Feb. 200 hPa Geo. Height First MCA Mode

(b) FMA Snow Days First MCA Mode

(c) MCA first Principal Component (PC1)

Tibet snow days and spring soil temp.

(d) AM 2-m Temp. First MCA Mode

(e) FMA Snow Days First MCA Mode

(f) MCA first Principal Component (PC1)

Yang Zhang and Zou Tao (2018)

2). Significant deficiencies of current land surface modeling and land data (Discovered based on Tibetan Plateau Measurement)

Figure 7. (**a**) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau at the first time step of the model simulation between Case 2003_EA and Case noSUBT_EA. (**b**) Observed May 2m-temperature (T2m) anomaly between 2003 and the reference. (**c**) GFS-simulated May T2m difference between Case 2003_EA and Case noSUBT_EA.

Figure 7. (**a**) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau at the first time step of the model simulation between Case 2003_EA and Case noSUBT_EA. (**b**) Observed May 2m-temperature (T2m) anomaly between 2003 and the reference. (**c**) GFS-simulated May T2m difference between Case 2003_EA and Case noSUBT_EA.

The spatial distribution of major stations of water-cryosphereatmosphere-biology interactions over the TP; (b) the typical observation instruments for different land covers.

в

Observed sites (14) over TP and the soil memory

	Persistence
15cm	1.66
20cm	1.8
40cm	2.25
80cm	2.71
160cm	3.3
320cm	4.7

Calculated based on the method described in Entin et al. (2001) and Hu and Feng (2004).

Observed sites (14) over TP and the soil memory

	Persistence
15cm	1.66
20cm	1.8
40 cm	2.25
80cm	2.71
160cm	3.3
320cm	4.7

Force Restore Method

	Persistence
Tgs (2cm)	1.2
Td (~1.5m)	1.23

May soil temperature Profile over the Tibetan Plateau

Joint Efforts of

The Third Pole Experiment (TPE) Earth System Model (ESM) Intercomparison Project (TPEMIP) Co-Chairs Yongkang Xue, Tandong Yao

GEWEX/GASS Initiative

Impact of initialized land temperature and snowpack on subseasonal to seasonal prediction (ILTSS2S) (First Phase)

Co-Chairs: Yongkang Xue (<u>yxue@geog.ucla.edu</u>), Tandong Yao (<u>tdyao@itpcas.ac.cn</u>); Aaron Boone (<u>aaron.boone@cnrm.meteo.fr</u>) with potential GLASS and CLIVAR Monsoon Panel Participation Project Goals

• What is the impact of the initialization of large scale LST/SUBT and snow pack, including the aerosol in snow, in climate models on the S2S prediction over different regions?

• What is the relative role and uncertainties in these land processes versus in SST in S2S prediction? How do they synergistically enhance the S2S predictability?

Plan to have a kick-off Workshop in 2018 AGU (Saturday and Sunday) 2nd workshop in Beijing in 2019 summer

More than 10 Global Earth System models and even more RCM (U.S., China and other East Asian countries, Europe, and other continents) will participate.

Summary

1). Tibetan Plateau (TP) land surface processes exerts great influence on the climate and environment at continental and even larger scales sue to its high elevation and geographic location and will experience substantial changes in next several decades.

2). The spring surface temperature (LST) and subsurface temperature (SUBT) over TP have significant impact on the summer droughts/floods (precipitation and temperature) in East Asia, South Asia, and Central Asia. The TP spring LST and SUBT anomalies are probably influenced by the winter snow and circulation.

3). Current land surface models/reanalysis data have severe deficiencies in reproducing the land memory that presented in the observational data, which would hamper the model S2S prediction ability.

4). TPE Earth System Model (ESM) Intercomparison Project (TPESMIP) and GEWEX/ GASS Initiative of "Impact of initialized land temperature and snowpack on subseasonal to seasonal prediction" First Phase will jointly investigate the TP LST/SUBT effect on the droughts/floods