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1). General Characteristics of Tibetan Climate and Future Projection
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Figure 8 The reduced absolute annual mean bias of precipitation (mm/day) simulations (or improved
prediction accuracy) due to land processes in the GCM. Based on Xue et al. (2010, J. Climate)



2). Effects of Tibetan Plateau Land Surface/subsurface temperature
and snow on the East, South, and Central Asian Climate



AGU 1008,

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1029/2017)D028246

Key Points:

« Possible remote effects of large-scale
land surface temperature in
geographical areas upstream on
droughts/floods have largely
been ignored

« Observations show significant lagged
correlation between spring surface
temperature and downstream
drought-flood in North America and
East Asia

+ North America and East Asian
modeling studies show causal
relationship between spring
land temperature anomaly and
downstream summer drought/flood
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Figure 13. Schematic diagram describing the processes associated with the impact of LST and SUBT anomalies affecting
downstream precipitation.



Observed May land surface temperature (LST) difference (K) and June precipitation difference
(mm day!) between coldest and warmest years (based on Tibetan Plateau LST)
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Figure 2. MCA over East Asia. (a) and (b) Spatial patterns of MCA1 for May T2m over Tibetan Plateau and June precipitation over East Asia, respectively. (¢) PC1 of
MCA during 1980-2015 for May T2m (blue line) and June precipitation (red line). (d) Scatter plots of March-April-May T2m (in K) over Tibetan Plateau (28-37°N, 92—
102°E) and June-July precipitation (in mm/day) over Yangtze River region (29-32°N, 112—121°E). In (d), black lines indicate means; green (red) dashed lines denote +/
—1 (+/-0.5) standard deviation boundaries for precipitation (T2m). (a), (b) & (c¢) are expressed in normalized unit.



2003 Case Study
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TABLE 2. Drought years over East Asia from 1900 to 2010. The events from 1900 to 2006 were obtained from the appendix table of Zhang
et al. (2009).

Year(s) Region Impacts
2003 Drought over the south of the Yangtze River Resulted in 100 X 10°kg crop yield losses and CNY 5.8 billion
and south China in autumn economic losses.

June 2003 Precipitation Anomaly
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Observed land surface temperature (LST) and SST anomalies

May 2003 LST Anomaly May 2003 SST Anomaly
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June 2003 Precip. Diff due _ June 2003 Precip. Diff
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The stippled areas denote statistical significance at the a <0.1 level of t-test values. The gray
shaded areas indicate no observational data. Unit: mm/day
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Figure 7. (a) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau
at the first time step of the model simulation between Case 2003 EA and Case
noSUBT EA. (b) Observed May 2m-temperature (T2m) anomaly between 2003 and the
reference. (¢) GFS-simulated May T2m difference between Case 2003 EA and Case

noSUBT EA.
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Area-Averaged Obs. and Simulated Precipitation (mm/day) Difference
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This relationship has been found beyond East Asia
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Observed May land surface temperature (LST) difference (K) and June precipitation difference
(mm day!) between coldest and warmest years (based on Tibetan Plateau LST)
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Observed May land surface temperature (LST) difference (K) and June precipitation difference
(mm day!) between coldest and warmest years (based on Tibetan Plateau LST)

Obs. May Temp. Difference Obs. June Precip. Difference
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Winter circulation and Tibet snow days
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2). Significant deficiencies of current land surface modeling and land data
(Discovered based on Tibetan Plateau Measurement)
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Figure 7. (a) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau
at the first time step of the model simulation between Case 2003 EA and Case
noSUBT EA. (b) Observed May 2m-temperature (T2m) anomaly between 2003 and the
reference. (¢) GFS-simulated May T2m difference between Case 2003 EA and Case

noSUBT EA.
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Figure 7. (a) Imposed sub-surface temperature (SUBT) difference over Tibetan Plateau
at the first time step of the model simulation between Case 2003 EA and Case
noSUBT EA. (b) Observed May 2m-temperature (T2m) anomaly between 2003 and the
reference. (¢) GFS-simulated May T2m difference between Case 2003 EA and Case
noSUBT EA.
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Observed Soil T Profile  Reanalysis and Force Restore T Profile
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Joint Efforts of

The Third Pole Experiment (TPE) Earth System Model (ESM)
Intercomparison Project (TPEMIP)
Co-Chairs Yongkang Xue, Tandong Yao

GEWEX/GASS Initiative
Impact of initialized land temperature and snowpack on subseasonal
to seasonal prediction (ILTSS2S)
Co-Chairs: Yongkang Xue (yxue@geog.ucla.edu), Tandong Yao
(tdyao@itpcas.ac.cn); Aaron Boone (aaron.boone@cnrm.meteo.fr)
with potential GLASS and CLIVAR Monsoon Panel Participation




Project Goals
. What 1s the impact of the initialization of large scale LST/SUBT and

snow pack, including the aerosol in snow, in climate models on the S2S
prediction over different regions?

. What is the relative role and uncertainties in these land processes
versus 1n SST 1in S28S prediction? How do they synergistically enhance the

S2S predictability?

Plan to have a kick-off Workshop in 2018 AGU (Saturday and Sunday)
2"d workshop in Beijing in 2019 summer

More than 10 Global Earth System models and even more RCM (U.S., China
and other East Asian countries, Europe, and other continents) will
participate.



Summary
1). Tibetan Plateau (TP) land surface processes exerts great influence on the climate and
environment at continental and even larger scales sue to its high elevation and geographic
location and will experience substantial changes in next several decades.

2). The spring surface temperature (LST) and subsurface temperature (SUBT) over TP
have significant impact on the summer droughts/floods (precipitation and temperature) in

East Asia, South Asia, and Central Asia. The TP spring LST and SUBT anomalies are
probably influenced by the winter snow and circulation.

3). Current land surface models/reanalysis data have severe deficiencies in reproducing the
land memory that presented in the observational data, which would hamper the model S2S
prediction ability.

4). TPE Earth System Model (ESM) Intercomparison Project (TPESMIP) and GEWEX/
GASS Initiative of “Impact of initialized land temperature and snowpack on subseasonal to
seasonal prediction” First Phase will jointly investigate the TP LST/SUBT effect on the
droughts/floods



