Impacts of snowpack accumulation and summer weather on alpine glacier hydrology

Caroline Aubry-Wake, Dhiraj Pradhananga, John W. Pomeroy

GEWEX 8th Open Science Meeting, Canmore AB, May 3-11 2018

Canadian Rockies: Variable weather and extremes over the last 5 years Summer 2013 Summer 2017

Winter 2015

Spring 2017

How does glacier runoff reacts to inter-annual variability?

For winter accumulation

For summer weather

Relevance

- Glacier melt is an important contributor to late summer streamflow
- Increasing weather extremes in a changing climate
- Investigating current inter-annual variability can help understanding future water resources

Peyto Glacier

- 2100 3190 m a.s.l.
- Weather station with T, RH, U, radiation budget
- Streamflow at outlet

Historical Retreat and Runoff

1966: 14.4 km² 2016: 9.9 km²

Temperature and precipitation,

- High spring precipitation balance low winter snowpack
- Fall precipitation close to 0°C
- Limited comparison

Field Site Observation Modeling Context

Conclusion

Cold Region Hydrological Modelling Platform (CRHM)

- Cold region processes
- Process-based, modular, flexible
- Includes avalanches, blowing snow, glacier and snowmelt
- Input data: Weather station
- Run 2013-2017

Basin

Hydrological Response Unit

Elevation, slope, aspect, land cover

Model validation

Melt components

Jan May Sep Jan May Sep Jan May Sep Jan May Sep Jan May

Total (m w.e.)	1.56	1.32	1.60	1.34	1.69
lce	50%	46%	60%	67%	65%
Snow	31%	41%	31%	30%	32%
Firn	19%	13%	9%	3%	3%

What generates streamflow?

2013: Firn melt

2014: Nearly equal ice and snow

2015: Fall precipitation

2016: High rain and melt

What generates streamflow?

2013: Firn melt

2014: Nearly equal ice and snow

2015: Fall precipitation

2016: High rain and melt

What generates streamflow?

2013: Firn melt

2014: Nearly equal ice and snow

2015: Fall precipitation

2016: High rain and melt

What generates streamflow?

2013: Firn melt

2014: Nearly equal ice and snow

2015: Fall precipitation

2016: High rain and melt

- Combining fieldwork and modeling provides further insights on the sources and variability of glacier runoff
- At Peyto, glacier melt still buffers streamflow, even though total runoff is less than historical
- Runoff composition varies considerably depending on seasonal conditions
- Years of low snow can be buffered by high summer rain, and vice-versa

Thank you,

Questions?