Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions

Maxime Daniel, Aude Lemonsu, Michel Déqué, Samuel Somot, Antoinette Alias, Valéry Masson

Météo France & CNRS, National Center for Meteorological Research (CNRM), Toulouse, France
Modeling of urban climate
Different approaches

For most of meteo/climate models:

- Cities do not exist and urban processes are not modeled (= vegetation)
- Cities are described as rock covers with high roughness and treated by SVAT models
 - Imperviousness
 - Surface heating capacities at daytime
 - Roughness effect on airflow
Modeling of urban climate
Different approaches

For most of meteo/climate models:
• Cities do not exist and urban processes are not modeled (= vegetation)
• Cities are described as rock covers with high roughness and treated by SVAT models
 ▶ Imperviousness
 ▶ Surface heating capacities at daytime
 ▶ Roughness effect on airflow

But not account for radiative effects related to 3D urban geometry

▶ 2000s: new generation of urban canopy models
Modeling of urban climate
Town Energy Balance (TEB) model (Masson 2000)

- Concept of mean urban canyon (Oke 1982)
 - Urban elements: roof, road, walls
 - Mean morphological characteristics
 - Mean radiative and thermal properties

- Physical processes including:
 - Radiative and energetic exchanges
 - Water and snow
 - T, H, U inside canyon

Source: Toulouse centre-ville, Google Earth
ALADIN-Climate regional climate simulations over France for past period
- Version: limited-area model ALADIN-Climate V6
- Spatial domain: Metropolitan France
- Horizontal resolution of 12 km
- Vertical grid: 92 levels
- Simulation period: 1980-2009
- Lateral boundary conditions: ERAinterim reanalyses (80 km resol)
ALADIN-Climate regional climate simulations over France for past period
- Version: limited-area model ALADIN-Climate V6
- Spatial domain: Metropolitan France
- Horizontal resolution of 12 km
- Vertical grid: 92 levels
- Simulation period: 1980-2009
- Lateral boundary conditions: ERAinterim reanalyses (80 km resol)

SURFEX land surface modeling system
- ISBA for natural soils and vegetation
- TEB for urban areas
- Land surface covers and properties defined with ECOCLIMAP v2 database
 - 3% of France is « urban »
Sensitivity experiments

Sensitivity analysis on representation of urban areas and urban processes

- Exp **CITY** Urban areas explicitly modeled by activating TEB in SURFEX
- Exp **ROCK** Urban areas modeled as rock covers with high roughness
- Exp **VEG** Urban areas replaced by local vegetation and modeled with ISBA

1) Evaluation of default configuration (**ROCK**)

by comparison with SAFRAN analyses (8-km resolution over France)

<table>
<thead>
<tr>
<th>Seasonal biases (mod - obs)</th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily precip rate (mm day⁻¹)</td>
<td>+0.23</td>
<td>+0.40</td>
<td>-0.41</td>
<td>-0.07</td>
</tr>
<tr>
<td>Incoming solar rad (W m⁻²)</td>
<td>+12.7</td>
<td>+34.0</td>
<td>+40.7</td>
<td>+23.1</td>
</tr>
<tr>
<td>Tmin (°C)</td>
<td>-1.12</td>
<td>-1.13</td>
<td>+0.09</td>
<td>-0.21</td>
</tr>
<tr>
<td>Tmax (°C)</td>
<td>+0.64</td>
<td>+0.42</td>
<td>+2.79</td>
<td>+1.31</td>
</tr>
</tbody>
</table>
Sensitivity analysis on representation of urban areas and urban processes

- **Exp CITY** Urban areas explicitly modeled by activating TEB in SURFEX
- **Exp ROCK** Urban areas modeled as rock covers with high roughness
- **Exp VEG** Urban areas replaced by local vegetation and modeled with ISBA

1) **Evaluation of default configuration (ROCK)**
 by comparison with SAFRAN analyses (8-km resolution over France)

2) **Comparison of sensitivity experiments**
 for daily precipitation and near-surface temperatures
 - **ROCK vs VEG** >> What urban effects with simple approach ?
 - **CITY vs VEG** >> What benefit of sophisticated parameterization ?
Sensitivity experiment results

Daily precipitation rates

- No significant impact on precipitation rates

\(\Delta RR \text{ (mm day}^{-1} \text{)} \)

grey = non-significant difference
Sensitivity experiment results
Near-surface temperatures

- No significant impact on precipitation rates

- Significant impact on Tmin and Tmax for all seasons
 - Maximum warming effect over urban areas
 - Regional impact of cities on temperature
 - Impact more pronounced for CITY than ROCK

<table>
<thead>
<tr>
<th>Example for Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>JJA</td>
</tr>
<tr>
<td>Tmin</td>
</tr>
<tr>
<td>CITY-VEG</td>
</tr>
<tr>
<td>ROCK-VEG</td>
</tr>
</tbody>
</table>
Urban heat island modeling
Evaluation for Paris area

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

\[ICU = \text{Turb} - \text{Trur}_{\text{avg}} \]

<table>
<thead>
<tr>
<th>ICU (°C)</th>
<th>OBS</th>
<th>VEG</th>
<th>ROCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>+2.1</td>
<td>-0.2</td>
<td>+0.7</td>
</tr>
<tr>
<td>Q99</td>
<td>+5.3</td>
<td>+1.8</td>
<td>+2.9</td>
</tr>
</tbody>
</table>

Distribution of UCI (Tmin) intensity (1980-2009)

Source: https://www.geoportail.gouv.fr/carte
Urban heat island modeling
Evaluation for Paris area

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

\[ICU = T_{urb} - T_{uravg} \]

<table>
<thead>
<tr>
<th>ICU (°C)</th>
<th>OBS</th>
<th>VEG</th>
<th>ROCK</th>
<th>CITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>+2.1</td>
<td>-0.2</td>
<td>+0.7</td>
<td>+0.9</td>
</tr>
<tr>
<td>Q99</td>
<td>+5.3</td>
<td>+1.8</td>
<td>+2.9</td>
<td>+2.9</td>
</tr>
</tbody>
</table>

Distribution of UCI (Tmin) intensity (1980-2009)

\[T_{CITY} = \text{avg} (T_{urb}, T_{nat}) \]
Urban heat island modeling
Evaluation for Paris area

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

\[\text{ICU} = T_{\text{urb}} - T_{\text{urb}_{\text{avg}}} \]

<table>
<thead>
<tr>
<th>ICU (°C)</th>
<th>OBS</th>
<th>VEG</th>
<th>ROCK</th>
<th>CITY</th>
<th>CITY (urb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>+2.1</td>
<td>-0.2</td>
<td>+0.7</td>
<td>+0.9</td>
<td>+1.5</td>
</tr>
<tr>
<td>Q99</td>
<td>+5.3</td>
<td>+1.8</td>
<td>+2.9</td>
<td>+2.9</td>
<td>+3.9</td>
</tr>
</tbody>
</table>

Distribution of UCI (T_{\text{min}}) intensity (1980-2009)

\[T_{\text{CITY}} = \text{avg} (T_{\text{urb}}, T_{\text{nat}}) \]
Urban heat island modeling
Evaluation for Paris area

<table>
<thead>
<tr>
<th>ICU (°C)</th>
<th>OBS</th>
<th>VEG</th>
<th>ROCK</th>
<th>CITY</th>
<th>CITY (urb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>+0.5</td>
<td>+0.3</td>
<td>+0.4</td>
<td>+1.1</td>
<td>+1.3</td>
</tr>
<tr>
<td>Q99</td>
<td>+2.5</td>
<td>+1.6</td>
<td>+2.1</td>
<td>+2.8</td>
<td>+3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICU (°C)</th>
<th>OBS</th>
<th>VEG</th>
<th>ROCK</th>
<th>CITY</th>
<th>CITY (urb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>+2.1</td>
<td>-0.2</td>
<td>+0.7</td>
<td>+0.9</td>
<td>+1.5</td>
</tr>
<tr>
<td>Q99</td>
<td>+5.3</td>
<td>+1.8</td>
<td>+2.9</td>
<td>+2.9</td>
<td>+3.9</td>
</tr>
</tbody>
</table>

Distribution of UCI (Tmax) intensity (1980-2009)

Distribution of UCI (Tmin) intensity (1980-2009)
Conclusions

- Regional impact of cities on near-surface temperatures (even at 12-km spatial resol) with a maximum warming effect localized over cities

- Using the TEB model instead the simple slab approach:
 - More pronounced urban effects (intensity and spatial extension)
 - Better simulation of nocturnal urban heat island with TEB
 >> important for sanitary impacts on urban population

- Relevant to activate urban canopy model for RCM simulation
 - No additional computational cost
 - Impact studies
Thank you for your attention

Contact: aude.lemonsu@meteo.fr

M. Daniel, A. Lemonsu, M. Déqué, S. Somot, A. Alias, V. Masson, 2018: Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions, *Climate Dynamics, in review*