Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions

Maxime Daniel, **Aude Lemonsu**, Michel Déqué, Samuel Somot, Antoinette Alias, Valéry Masson

Météo France & CNRS, National Center for Meteorological Research (CNRM), Toulouse, France

Modeling of urban climate Different approaches

For most of meteo/climate models:

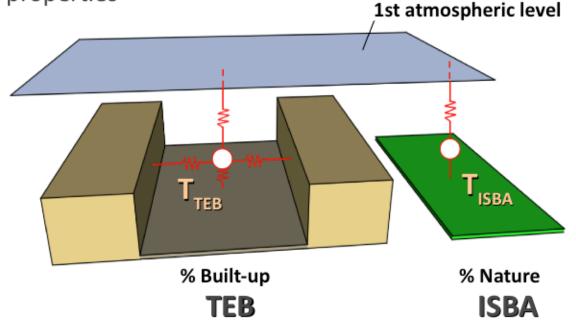
- Cities do not exist and urban processes are not modeled (= vegetation)
- Cities are described as rock covers with high roughness and treated by SVAT models
 - Imperviousness
 - Surface heating capacities at daytime
 - Roughness effect on airflow

Modeling of urban climate Different approaches

For most of meteo/climate models:

- Cities do not exist and urban processes are not modeled (= vegetation)
- Cities are described as rock covers with high roughness and treated by SVAT models
 - Imperviousness
 - Surface heating capacities at daytime
 - Roughness effect on airflow

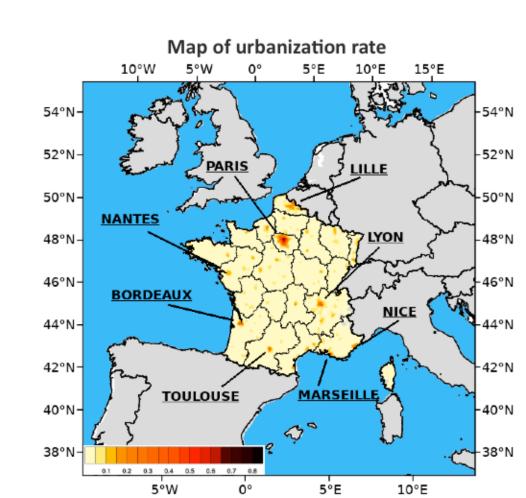
But not account for radiative effects related to 3D urban geometry


▶ 2000s : new generation of urban canopy models

Modeling of urban climate Town Energy Balance (TEB) model (Masson 2000)

- Concept of mean urban canyon (Oke 1982)
 - Urban elements: roof, road, walls
 - Mean morphological characteristics
 - Mean radiative and thermal properties

Source: Toulouse centre-ville, Google Earth



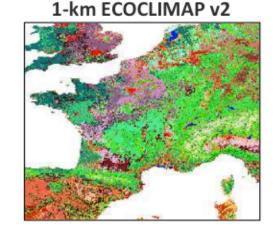
- Physical processes including :
 - Radiative and energetic exchanges
 - Water and snow
 - T,HU,U inside canyon

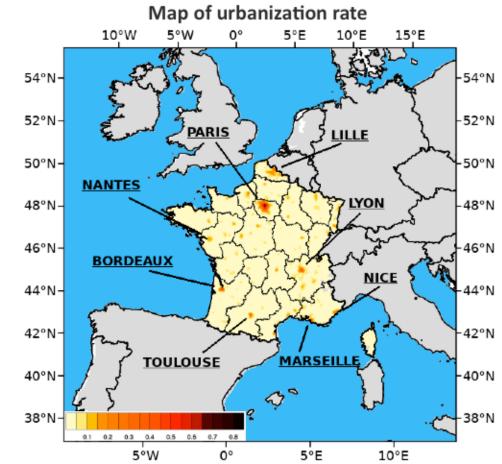
Regional Climate Model simulations Configuration

ALADIN-Climate regional climate simulations over France for past period

- Version: limited-area model ALADIN-Climate V6
- Spatial domain: Metropolitan France
- Horizontal resolution of 12 km
- Vertical grid: 92 levels
- Simulation period: 1980-2009
- Lateral boundary conditions:
 ERAinterim reanalyses (80 km resol)

Regional Climate Model simulations


Configuration


ALADIN-Climate regional climate simulations over France for past period

- Version: limited-area model ALADIN-Climate V6
- Spatial domain: Metropolitan France
- Horizontal resolution of 12 km
- Vertical grid: 92 levels
- Simulation period: 1980-2009
- Lateral boundary conditions:
 ERAinterim reanalyses (80 km resol)

SURFEX land surface modeling system

- ISBA for natural soils and vegetation
- TEB for urban areas
- Land surface covers and properties defined with ECOCLIMAP v2 database
 - ▶ 3 % of France is « urban »

Sensitivity experiments

Sensitivity analysis on representation of urban areas and urban processes

- Exp CITY Urban areas explicitely modeled by activating TEB in SURFEX
- Exp ROCK Urban areas modeled as rock covers with high roughness
- Exp VEG Urban areas replaced by local vegetation and modeled with ISBA

1) Evaluation of default configuration (ROCK)

by comparison with SAFRAN analyses (8-km resolution over France)

Seasonal biases (mod - obs)

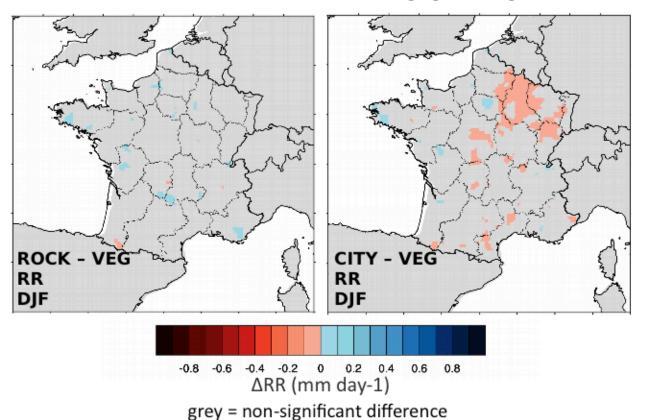
	DJF	MAM	JJA	SON
Daily precip rate (mm day-1)	+0,23	+0,40	-0,41	-0,07
Incoming solar rad (W m-2)	+12,7	+34,0	+40,7	+23,1
Tmin (°C)	-1,12	-1,13	+0,09	-0,21
Tmax (°C)	+0,64	+0,42	+2,79	+1,31

Sensitivity experiments

Sensitivity analysis on representation of urban areas and urban processes

- Exp CITY Urban areas explicitely modeled by activating TEB in SURFEX
- Exp ROCK Urban areas modeled as rock covers with high roughness
- Exp VEG Urban areas replaced by local vegetation and modeled with ISBA

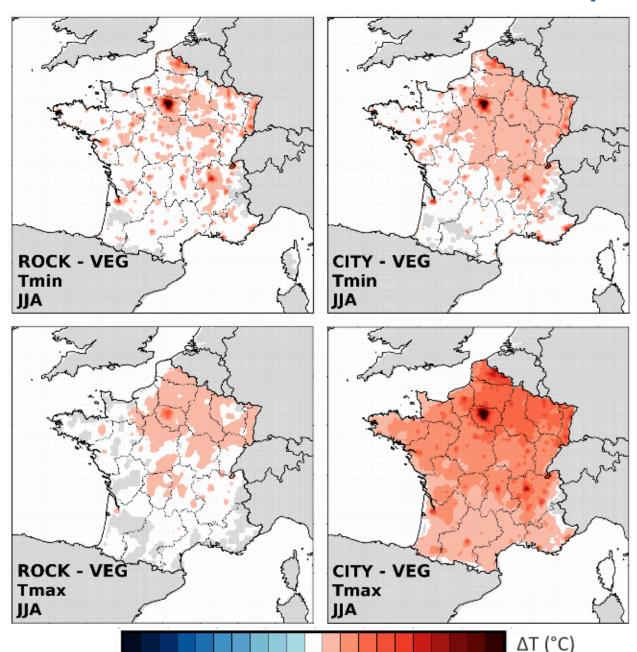
1) Evaluation of default configuration (ROCK)


by comparison with SAFRAN analyses (8-km resolution over France)

2) Comparison of sensitivity experiments

for daily precipitation and near-surface temperatures

- ROCK vs VEG >> What urban effects with simple approach?
- **CITY vs VEG** >> What benefit of sophisticated parameterization?


Sensitivity experiment results Daily precipitation rates

 No significant impact on precipitation rates

Sensitivity experiment results

Near-surface temperatures

0.4

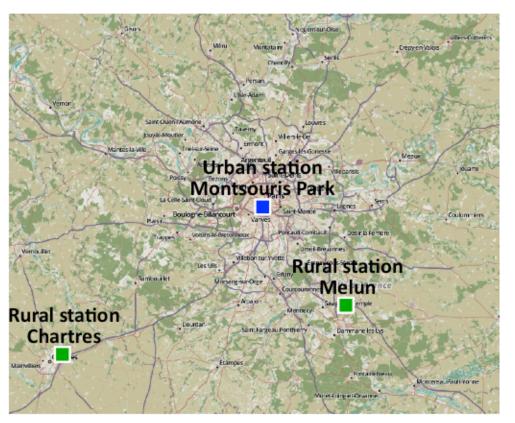
0.6

0.8

-0.9 -0.7 -0.5 -0.3 -0.1 0.2

10

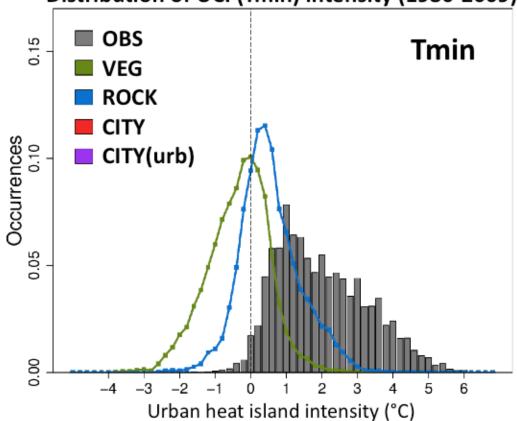
- No significant impact on precipitation rates
- Significant impact on Tmin and Tmax for all seasons
 - Maximum warming effect over urban areas
 - Regional impact of cities on temperature
 - Impact more pronounced for CITY than ROCK


Example for Paris

	וו	A	DJF		
	Tmin	Tmax	Tmin	Tmax	
CITY-VEG	+1,5	+0,7	+1,3	+0,7	
ROCK-VEG	+1,3	+1,1	+0,4	-0,3	

Urban heat island modeling

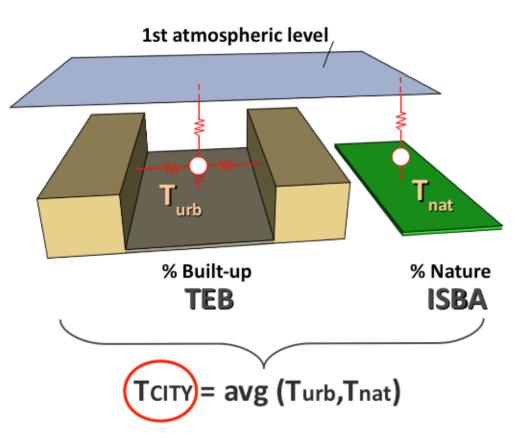
Evaluation for Paris area

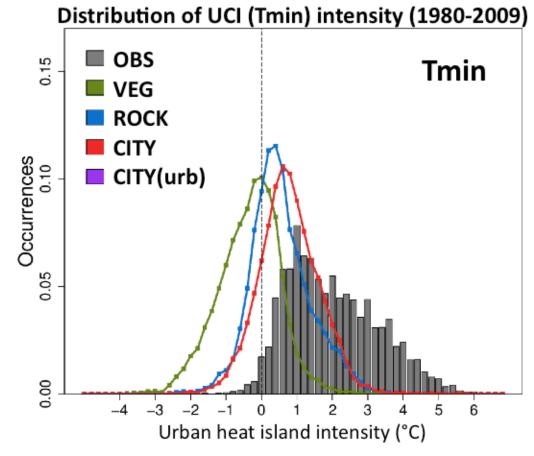

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

Source: https://www.geoportail.gouv.fr/carte

ICU (°C)	OBS	VEG	ROCK
Avg	+2.1	-0.2	+0.7
Q99	+5.3	+1.8	+2.9

Distribution of UCI (Tmin) intensity (1980-2009)

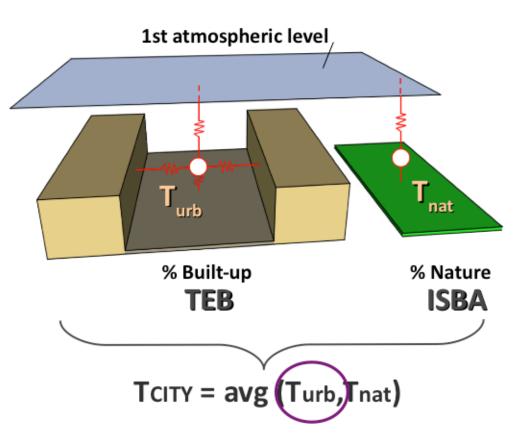


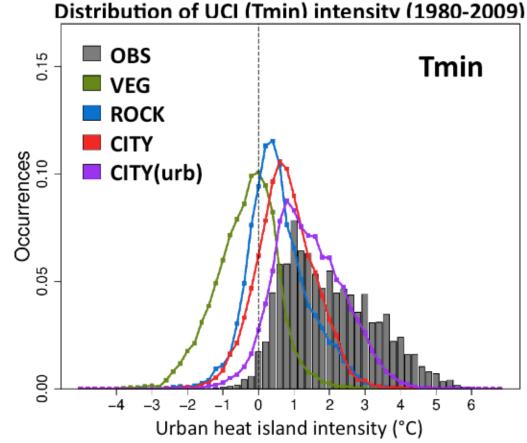

Urban heat island modeling Evaluation for Paris area

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

ICU = Turb - Truravg

ICU (°C)	OBS	VEG	ROCK	CITY
Avg	+2.1	-0.2	+0.7	+0.9
Q99	+5.3	+1.8	+2.9	+2.9

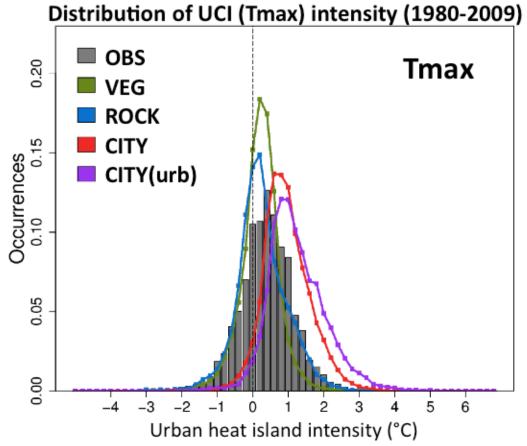

Urban heat island modeling

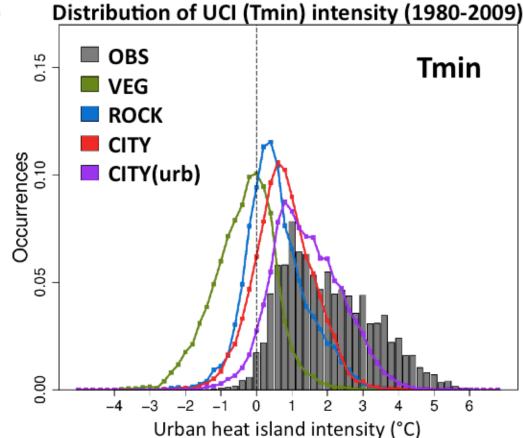

Evaluation for Paris area

Evaluation of urban heat island modeling by comparison with long-term observation time series in Paris region

ICU = Turb - Truravg

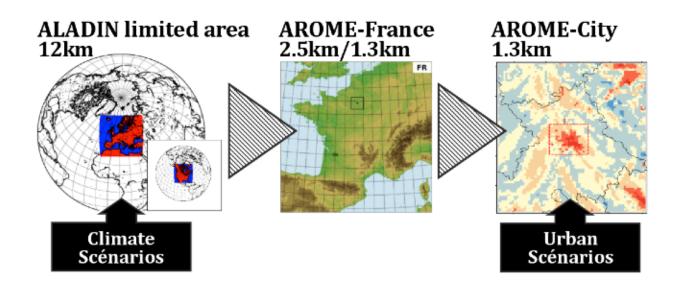
ICU (°C)	OBS	VEG	ROCK	CITY	CITY (urb)
Avg	+2.1	-0.2	+0.7	+0.9	+1.5
Q99	+5.3	+1.8	+2.9	+2.9	+3.9




Urban heat island modeling

Evaluation for Paris area

ICU (°C)	OBS	VEG	ROCK	CITY	CITY (urb)
Avg	+0.5	+0.3	+0.4	+1.1	+1.3
Q99	+2.5	+1.6	+2.1	+2.8	+3.6


ICU (°C)	OBS	VEG	ROCK	CITY	CITY (urb)
Avg	+2.1	-0.2	+0.7	+0.9	+1.5
Q99	+5.3	+1.8	+2.9	+2.9	+3.9

Conclusions

- Regional impact of cities on near-surface temperatures (even at 12-km spatial resol)
 with a maximum warming effect localized over cities
- Using the TEB model instead the simple slab approach:
 - More pronounced urban effects (intensity and spatial extension)
 - Better simulation of nocturnal urban heat island with TEB
 >> important for sanitary impacts on urban population
- Relevant to activate urban canopy model for RCM simulation
 - No additional computational cost
 - Impact studies

Thank you for your attention

Contact: aude.lemonsu@meteo.fr

M. Daniel, A. Lemonsu, M. Déqué, S. Somot, A. Alias, V. Masson, 2018: Benefits of explicit urban parameterization in regional climate modeling to study climate and city interactions, Climate Dynamics, in review

