

Global Institute for Water Security USASK.CA/WATER

Impact of climate and associated land cover changes on the hydrology of the Mackenzie River Basin

Mohamed Elshamy, Alain Pietroniro, and Howard Wheater 8th GEWEX Open Science Conference, Canmore, May 8, 2018

Outline

- Objectives
- MRB Overview
- Model Configuration and Validation for MRB
- Permafrost
- Future Scenarios
- Preliminary Results Impacts on Streamflow and ALD
- Conclusions and Way Forward

MRB MODELLING: OBJECTIVES

- To improve large scale modelling for operational management and transboundary water resource planning
- 2. To simulate scenarios of changing flow regimes under climate and land use/cover change
- To Investigate the uncertainty of hydrological simulations to climatic forcing (Current and Future)

MRB – Overview (1)

MRB extends between 102-140° W and 52-69° N MRB Model 19,598 grid cells, 11/12 GRUs, 1.755 M Km²

MRB – OVERVIEW (2)

Sub-basin	Outlet Station	Area (km²)	Flow (BCM/yr)	MAP (mm/yr)	RF
Athabasca	Athabasca@Fort McMurray	132,057	17.37	504	26%
Peace	Peace@Peace Point	300,360	61.96	553	37%
Lake Athabasca [*]	Slave @FitzgareId	597,219	100.76	512	33%
	Slave@Fitzgerald	164,802	21.43	444	29%
Hay	Hay@Hay River	51,531	3.78	428	17%
Liard	Liard nr Mouth	272,956	85.64	613	51%
Great Slave Lake+	Mackenzie@Fort Simpson	1,294,903	224.07	490	35%
		373,197	33.89	373	24%
Great Bear Lake	Great Bear River@outlet	146,629	18.62	338	38%
Mackenzie [#]	Maakannia@Antia Dad Diver	1,685,073	305.24	474	38%
	Mackenzie@Artic Red River				
Peel	Peel above Fort McPherson	70,748	21.15	535	56%
Whole Mackenzie [!]	O. Alak	1,775,101	332.11	475	39%
	Outlet	19,280	5.72	535	55%

Using CaPA Precipitation and Observed Flows for

MESH Framework

- Requires detailed climate Forcing (7 variables – Subdaily)
- Requires information about drainage between different cells (derived from DEM)
- Requires information on Soil and land use/cover

Spatial Distributed physically/conceptual based

Permafrost – Importance & Study Locations

Model Configuration & Validation

- Spatial resolution: 0.125° ≈ 10 km
- Checked drainage directions such that sub-basin areas/shapes are compatible with WSC shapes for about 270 gauges
- 11 GRUs (12 after splitting East/West)
- 21 Natural Lakes are explicitly included + Dynamically Zoned Reservoir Scheme for Bennet Dam
- Distributed Soil Texture & Depth to Bedrock
- Deep soil profile (24L 50m) to represent Permafrost
- Calibration of two major sub-basins (Liard and Great Bear) and the generalization of parameters for others
- Validation of Active Layer Depth and Temperature Profiles at few points with Permafrost observations
- Spinning Strategy was devised for Permafrost initialization

Model Performance (2)

HavikPak Creek (HPC) – Spinning

HPC Forest GRU - Permafrost

2011 Envelopes

2010 Envelopes

Simulations: HPC forced with WFDEI 1979-2012 + Inuvik Temp, spun 200 cycles using 1/10/1979-30/9/1980 and run 1/10/1979-31/12/2012 - FOREST Temp Observations: Inuvik Airport Site 01TC2 (Tree) – just outside the basin

Mapping Active Layer Depth 1980-2010

Future Scenarios

- Climate Change only (CC)
 - CanRCM4 Bias Corrected by WFDEI-GPCC
- Climate Change + Land Cover/Use Change (CC+LC)
 - Land cover changed in 2040 and 2085
 - Glacier retreat based on Garry Clarke (2015) results uner CanESM2-RCP8.5
- Climate Change + Land Cover/Use Change + Water Management (CC+LC+WM)
 - Site C Dam
 - Activate Irrigation & Diversions

Future Scenarios – Climate

- 15 simulations of 0.44° (~50 km) + 1 finer resolution (0.22° ~25 km) over North American Domain run (Historical 1950-2005 then RCP 8.5 for 2006-2100) CanESM2 downscaled by CanRCM4
- Hourly data for 21 Variables downloaded (32 TB) for all members
- Scripts developed to extract desired basin, all members were processed for MRB and 1 is being run through
- 1st scenario has been BIAS Corrected (all 7 variables) based on WFDEI-GPCC (correction is under progress for GEM-CaPA)

Future Scenarios – Land Cover/Use

Future Scenarios - Glaciers

Simulation Timeline

Date/Period	Туре			
1. Oct 1979 – Sep 1980	Spin-up (50-100 Cycles)			
2. Oct 1979 – Sep 2010 Oct 1980 – Sep 2010	Open Loop Analysis – Baseline Period			
3. Oct 2010 – Sep 2020	Open Loop			
Oct 2020	Land Use 2040 Introduced			
4. Oct 2020 – Sep 2025	Open Loop - Land Use 2040 Smoothing			
5. Oct 2025 – Sep 2055	Open Loop Analysis – Near Future			
6. Oct 2055 – Sep 2065	Open Loop			
Oct 2065	Land Use 2085 Introduced			
7. Oct 2065 – Sep 2070	Open Loop - Land Use 2085 Smoothing			
8. Oct 2070 – Sep 2100	Open Loop Analysis – Far Future			

Average Hydrographs – CC Only

Average Hydrographs CC+LCC 2040

Summary for flow changes (CC only)

Sub-basin	Outlet Station	2025-2055				2070-2100			
		Precip	%	Flow	%	Precip	%	Flow	%
		(mm/yr)	Change	(BCM/yr)	Change	(mm/yr)	Change	(BCM/yr)	Change
Athabasca	Athabasca@Fort McMurray	606	14%	22.6	15%	665	25%	24.1	22%
Peace	Peace@Peace Point	623	13%	76.0	8%	697	27%	80.1	14%
Lake Athabasca [*]	Slave@Fitzgerald	598	14%	137.0	12%	661	26%	143.5	18%
		547	17%	38.4	20%	591	26%	39.2	22%
Hay	Hay@Hay River	547	15%	8.5	11%	620	30%	10.0	30%
Liard	Liard nr Mouth	573	12%	73.1	11%	660	29%	84.0	28%
Great Slave Lake ⁺	Mackenzie@Fort Simpson	545	15%	280.7	15%	612	29%	311.7	27%
		440	19%	62.1	26%	500	35%	74.2	51%
Great Bear Lake	Great Bear River@outlet	404	22%	22.4	29%	468	41%	27.4	58%
Mackenzie#	Mackenzie@Artic Red River	520	16%	355.1	17%	588	31%	400.4	32%
		456	19%	52.0	24%	533	39%	61.3	47%

Impacts on Permafrost – Mid 21st Century

Impacts of Permafrost – End of 21st Century

Summary & Way Forward

- Earlier snow melt, higher peaks at most locations → high risk of flooding
- Low flows are mostly unchanged but become more variable
- Widespread permafrost thaw onnectivity and land from impacts need to be studied further
- Uncertainty due to Forcing and Parameters underway
- Future Uncertainty due to RCPs & GCMs/RCMs underway

Thank

you

Water means

the WORLD

SASKATCHEWAN
LIDGE TO US...

UNIVERSITY OF SASKATCHEWAN
Global Institute for
Water Security

USASK.CA/WATER