Global Institute for Water Security USASK.CA/WATER Impact of climate and associated land cover changes on the hydrology of the Mackenzie River Basin Mohamed Elshamy, Alain Pietroniro, and Howard Wheater 8th GEWEX Open Science Conference, Canmore, May 8, 2018 #### Outline - Objectives - MRB Overview - Model Configuration and Validation for MRB - Permafrost - Future Scenarios - Preliminary Results Impacts on Streamflow and ALD - Conclusions and Way Forward #### MRB MODELLING: OBJECTIVES - To improve large scale modelling for operational management and transboundary water resource planning - 2. To simulate scenarios of changing flow regimes under climate and land use/cover change - To Investigate the uncertainty of hydrological simulations to climatic forcing (Current and Future) # MRB – Overview (1) MRB extends between 102-140° W and 52-69° N MRB Model 19,598 grid cells, 11/12 GRUs, 1.755 M Km² # MRB – OVERVIEW (2) | Sub-basin | Outlet Station | Area (km²) | Flow (BCM/yr) | MAP (mm/yr) | RF | |------------------------------|---------------------------|------------|---------------|-------------|-----| | Athabasca | Athabasca@Fort McMurray | 132,057 | 17.37 | 504 | 26% | | Peace | Peace@Peace Point | 300,360 | 61.96 | 553 | 37% | | Lake Athabasca [*] | Slave @FitzgareId | 597,219 | 100.76 | 512 | 33% | | | Slave@Fitzgerald | 164,802 | 21.43 | 444 | 29% | | Hay | Hay@Hay River | 51,531 | 3.78 | 428 | 17% | | Liard | Liard nr Mouth | 272,956 | 85.64 | 613 | 51% | | Great Slave Lake+ | Mackenzie@Fort Simpson | 1,294,903 | 224.07 | 490 | 35% | | | | 373,197 | 33.89 | 373 | 24% | | Great Bear Lake | Great Bear River@outlet | 146,629 | 18.62 | 338 | 38% | | Mackenzie [#] | Maakannia@Antia Dad Diver | 1,685,073 | 305.24 | 474 | 38% | | | Mackenzie@Artic Red River | | | | | | Peel | Peel above Fort McPherson | 70,748 | 21.15 | 535 | 56% | | Whole Mackenzie [!] | O. Alak | 1,775,101 | 332.11 | 475 | 39% | | | Outlet | 19,280 | 5.72 | 535 | 55% | #### Using CaPA Precipitation and Observed Flows for #### MESH Framework - Requires detailed climate Forcing (7 variables – Subdaily) - Requires information about drainage between different cells (derived from DEM) - Requires information on Soil and land use/cover Spatial Distributed physically/conceptual based #### Permafrost – Importance & Study Locations ## Model Configuration & Validation - Spatial resolution: 0.125° ≈ 10 km - Checked drainage directions such that sub-basin areas/shapes are compatible with WSC shapes for about 270 gauges - 11 GRUs (12 after splitting East/West) - 21 Natural Lakes are explicitly included + Dynamically Zoned Reservoir Scheme for Bennet Dam - Distributed Soil Texture & Depth to Bedrock - Deep soil profile (24L 50m) to represent Permafrost - Calibration of two major sub-basins (Liard and Great Bear) and the generalization of parameters for others - Validation of Active Layer Depth and Temperature Profiles at few points with Permafrost observations - Spinning Strategy was devised for Permafrost initialization # Model Performance (2) # HavikPak Creek (HPC) – Spinning #### **HPC Forest GRU - Permafrost** #### 2011 Envelopes #### 2010 Envelopes Simulations: HPC forced with WFDEI 1979-2012 + Inuvik Temp, spun 200 cycles using 1/10/1979-30/9/1980 and run 1/10/1979-31/12/2012 - FOREST Temp Observations: Inuvik Airport Site 01TC2 (Tree) – just outside the basin ## Mapping Active Layer Depth 1980-2010 #### **Future Scenarios** - Climate Change only (CC) - CanRCM4 Bias Corrected by WFDEI-GPCC - Climate Change + Land Cover/Use Change (CC+LC) - Land cover changed in 2040 and 2085 - Glacier retreat based on Garry Clarke (2015) results uner CanESM2-RCP8.5 - Climate Change + Land Cover/Use Change + Water Management (CC+LC+WM) - Site C Dam - Activate Irrigation & Diversions #### Future Scenarios – Climate - 15 simulations of 0.44° (~50 km) + 1 finer resolution (0.22° ~25 km) over North American Domain run (Historical 1950-2005 then RCP 8.5 for 2006-2100) CanESM2 downscaled by CanRCM4 - Hourly data for 21 Variables downloaded (32 TB) for all members - Scripts developed to extract desired basin, all members were processed for MRB and 1 is being run through - 1st scenario has been BIAS Corrected (all 7 variables) based on WFDEI-GPCC (correction is under progress for GEM-CaPA) # Future Scenarios – Land Cover/Use #### Future Scenarios - Glaciers ### Simulation Timeline | Date/Period | Туре | | | | |---|---|--|--|--| | 1. Oct 1979 – Sep 1980 | Spin-up (50-100 Cycles) | | | | | 2. Oct 1979 – Sep 2010
Oct 1980 – Sep 2010 | Open Loop
Analysis – Baseline Period | | | | | 3. Oct 2010 – Sep 2020 | Open Loop | | | | | Oct 2020 | Land Use 2040 Introduced | | | | | 4. Oct 2020 – Sep 2025 | Open Loop - Land Use 2040 Smoothing | | | | | 5. Oct 2025 – Sep 2055 | Open Loop
Analysis – Near Future | | | | | 6. Oct 2055 – Sep 2065 | Open Loop | | | | | Oct 2065 | Land Use 2085 Introduced | | | | | 7. Oct 2065 – Sep 2070 | Open Loop - Land Use 2085 Smoothing | | | | | 8. Oct 2070 – Sep 2100 | Open Loop
Analysis – Far Future | | | | # Average Hydrographs – CC Only # Average Hydrographs CC+LCC 2040 # Summary for flow changes (CC only) | Sub-basin | Outlet Station | 2025-2055 | | | | 2070-2100 | | | | |----------------------------------|------------------------------|-----------|--------|----------|--------|-----------|--------|----------|--------| | | | Precip | % | Flow | % | Precip | % | Flow | % | | | | (mm/yr) | Change | (BCM/yr) | Change | (mm/yr) | Change | (BCM/yr) | Change | | Athabasca | Athabasca@Fort
McMurray | 606 | 14% | 22.6 | 15% | 665 | 25% | 24.1 | 22% | | Peace | Peace@Peace Point | 623 | 13% | 76.0 | 8% | 697 | 27% | 80.1 | 14% | | Lake
Athabasca [*] | Slave@Fitzgerald | 598 | 14% | 137.0 | 12% | 661 | 26% | 143.5 | 18% | | | | 547 | 17% | 38.4 | 20% | 591 | 26% | 39.2 | 22% | | Hay | Hay@Hay River | 547 | 15% | 8.5 | 11% | 620 | 30% | 10.0 | 30% | | Liard | Liard nr Mouth | 573 | 12% | 73.1 | 11% | 660 | 29% | 84.0 | 28% | | Great Slave
Lake ⁺ | Mackenzie@Fort
Simpson | 545 | 15% | 280.7 | 15% | 612 | 29% | 311.7 | 27% | | | | 440 | 19% | 62.1 | 26% | 500 | 35% | 74.2 | 51% | | Great Bear
Lake | Great Bear
River@outlet | 404 | 22% | 22.4 | 29% | 468 | 41% | 27.4 | 58% | | Mackenzie# | Mackenzie@Artic
Red River | 520 | 16% | 355.1 | 17% | 588 | 31% | 400.4 | 32% | | | | 456 | 19% | 52.0 | 24% | 533 | 39% | 61.3 | 47% | #### Impacts on Permafrost – Mid 21st Century ## Impacts of Permafrost – End of 21st Century # Summary & Way Forward - Earlier snow melt, higher peaks at most locations → high risk of flooding - Low flows are mostly unchanged but become more variable - Widespread permafrost thaw onnectivity and land from impacts need to be studied further - Uncertainty due to Forcing and Parameters underway - Future Uncertainty due to RCPs & GCMs/RCMs underway # Thank you Water means the WORLD SASKATCHEWAN LIDGE TO US... UNIVERSITY OF SASKATCHEWAN Global Institute for Water Security USASK.CA/WATER