Local soil moisture – rainfall correlation at varying spatial scales

C.M. Holgate1,2, A.I.J.M. Van Dijk1, J.P. Evans3,4, A.J. Pitman3,4

1 Fenner School of Environment and Society, Australian National University
2 ARC Centre of Excellence for Climate System Science, UNSW Australia
3 ARC Centre of Excellence for Climate Extremes, UNSW Australia
4 Climate Change Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia
Background

• PhD: what role does L-A coupling play in Australian rainfall & drought?

• Initial study: where & when coupling detectable.

• Which technique?
Correlation assumes 1D mechanism

- Covariance of co-located, gridded SM & P
Study aims

• Does a SM-P relationship exist under the 1d assumption?
• Is the relationship robust at varying spatial scales?
Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>AGCD</td>
<td>0.05°</td>
<td>Daily</td>
<td>1901 – 2016</td>
</tr>
<tr>
<td></td>
<td>MSWEP v2.2</td>
<td>0.1°</td>
<td>3-hourly</td>
<td>1979 – 2016</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>WaterDyn</td>
<td>0.05°</td>
<td>Daily</td>
<td>1911 – 2016</td>
</tr>
<tr>
<td></td>
<td>CCI</td>
<td>0.25°</td>
<td>Daily</td>
<td>1979 – 2015</td>
</tr>
<tr>
<td>Wind speed</td>
<td>ERA-I</td>
<td>0.75°</td>
<td>6-hourly</td>
<td>1979 – 2015</td>
</tr>
</tbody>
</table>
Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Source</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation</td>
<td>AGCD</td>
<td>0.05°</td>
<td>Daily</td>
<td>1901 – 2016</td>
</tr>
<tr>
<td></td>
<td>MSWEP v2.2</td>
<td>0.1°</td>
<td>3-hourly</td>
<td>1979 – 2016</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>WaterDyn</td>
<td>0.05°</td>
<td>Daily</td>
<td>1911 – 2016</td>
</tr>
<tr>
<td></td>
<td>CCI</td>
<td>0.25°</td>
<td>Daily</td>
<td>1979 – 2015</td>
</tr>
<tr>
<td>Wind speed</td>
<td>ERA-I</td>
<td>0.75°</td>
<td>6-hourly</td>
<td>1979 – 2015</td>
</tr>
</tbody>
</table>
Methodology

• Spearman-rank correlation
 – Daily average SM and next-day P
 – 1979-2015

• Analyse seasons individually

• Consider only first days of rain, where consecutive rain days recorded

• Choice of spatial scale?
Choice of spatial scale

- Daily data + 1d assumption
 - Constrain grid scale to distance air parcel may be transported across landscape in single day
- Surface wind speed \(\sim 4 \text{ms}^{-1} \) most common
1d assumption flawed?

4 ms$^{-1}$ x 7 h ≈ 100 km ≈ 1$^\circ$
Choice of spatial scale
Correlation of SM_i and P_{i+1} (1°)

Summer
- Significant, positive

Autumn
- Coloured = significant
- Hatch = ignore (N<15)

Winter
- Significant, positive

Spring
- Significant, negative
Correlation at different spatial scales

- **Summer**
 - 0.05°: Low sample sizes at small scale
 - 0.5°: Similar pattern to 1°
 - 2.5°: Interesting negative relationship

- **Winter**
Differences as function of scale

Correlation magnitude higher at smaller scale

Two-thirds of cells with higher correlation at smaller scale
Summary

1. Upholding coupling 1d assumption requires:
 - Careful data filtering
 - Accounting for sample size issues

2. Significant relationship found:
 - Positive in northern & central Australia
 - Negative in south/southeast (austral winter)

3. Scale-dependent correlations:
 - Implications for modelled coupling
Thank you

chiara.holgate@anu.edu.au