

Investigating a possible contribution of land surface processes on extreme hot event in Northeast Eurasia in recent summer

<u>Tomonori Sato</u> (Hokkaido University, Japan) Tetsu Nakamura Erdenebat Enkhbat

•Erdenebat, E. and T. Sato, 2016: Recent increase in heat wave frequency around Mongolia: role of atmospheric forcing and possible influence of soil moisture deficit. *Atmos. Sci. Lett.*, **17**, 135-140, DOI: 10.1002/asl.616

•Sato, T. and T. Nakamura, 2018: To be submitted.

Recent increase in mean and extremely high temperature over Eurasia

Question

- Is there possible role of surface anomalies for inducing wave-train patterns over Eurasia?
 - Koster et al. (2016, JCLI) examined for North America
- Do surface anomalies affect the sign of circumglobal teleconnection?

Data: Large ensemble exp. output

- Database for Policy Decision making for Future climate change, <u>d4PDF</u>) (Mizuta et al., 2017, BAMS)
 - 60km MRI-AGCM3.2 (driven using observed monthly SST, sea ice, and external forcings)
 - 60yrs (1951-2011) × 100 ensemble members =6,000yrs
 - Experiment: Historical simulation
 - Interval: Monthly output

Similar wavy patterns in decadal change (2000s minus 1980s)

•Some members simulated the realistic T2m change over Eurasia.

diff T2m, 2000s-1980s (ens=025)

Similar wavy patterns in decadal change (2000s minus 1980s)

 Atmospheric wave-induced T2m change in decadal timescale is commonly seen, but the phase is diverse.

•The recent T2m change pattern can occur independently from SST.

d4PDF

diff T2m, 2000s-1980s (ens=078)

diff T2m, 2000s-1980s (ens=093)

N=6000 (60yrs x 100member), JJA-mean T_{2m}

 •EOF1: recently-enhanced warming trend centered over western and northern Eurasia. →associated with global climate change (SST and external forcings)
 •EOF2&3: wave-train pattern that occurs almost randomly with time. →associated with atmospheric internal variability (independent from SST)

N=6000 (60yrs x 100member), T_{2m} (JJA) deviation from ensemble mean

•EOF1, 2: Wave pattern is a primary mode for among-member spread

Referenced domain: 40-60E, 45-60N

•EOF1: Snow water anomalies over western and central Siberia

•EOF2: Persistent snow water anomalies over Kazakhstan-Russia-Ukraine region.

Summary

- We analyzed huge ensemble AGCM experiment to study the effects of land surface processes on the formation of Eurasian summer temperature anomalies.
- Wave pattern in T_{2m} occurs randomly with time.
 - \rightarrow T_{2m} anomaly pattern can be generated independently from SST, suggesting the importance of atmospheric internal variability and L-A interaction.
- Soil moisture anomaly around Kazakhstan-Russia-Ukraine region in spring affects the likelihood of sign selection of the EOF score.
 - →e.g., higher SM in May prefers warm-cold-warm T_{2m} anomaly pattern over Eurasia in summer.
 - Snow water equivalent affect the SM in snow melting season.
- These findings encourage the idea that L-A interaction is important for seasonal prediction over northern Eurasia.

•T2m jump over mid-latitude was simulated regardless of ensemble members (SST forcing) •T2m change in d4PDF (ensemble) is more uniform than JRA55 (due to 100 member average)

JJA T_{2m} pattern vs Spring Soil Mois.

•Similar result with EOF-1.

Referenced domain: 50-70E, 48-58N

Supporting material: Topography

The location of the jet is determined dynamically by internal variability. The jet meanders largely over Eurasia during summer.
Is there contribution of land processes?

2003 European Heat Wave

SAT

Z500

Fischer et al. (2007)

Response of upper-air circulation to SM anomaly

- SM anomaly imposed at slightly different locations emerge a common synoptic circulation anomaly which can propagate remotely.
- It is unclear whether there are similar SM effects in Eurasia.