Tropical coastal dehydrator in global atmospheric water circulation: An overview

Shin-Ya Ogino¹ (ogino-sy@jamstec.go.jp), Manabu D. Yamanaka^{1*}, Shuichi Mori¹, and Jun Matsumoto^{1,2} ¹Japan Agency for Marine-Earth Science and Technology, ²Tokyo Metropolitan University, *Now at Research Institute for Humanity and Nature

Summary

- A conceptual advance of the global water cycle
 - The precipitation concentrated in tropical coastlines
 - The role of an atmospheric dehydrator between the ocean and land
- New insights on
 - Climate maintenance and change
 - Direct freshwater supply over the coastal ocean

Publications

Ogino, S.-Y., M. D. Yamanaka, S. Mori, and J. Matsumoto (2016), How much is the precipitation amount over the tropical coastal region?, J. Clim., 29(3), 1231–1236, https://doi.org/10.1175/JCLI-D-15-0484.1

Yamanaka, M. D. (2016), Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies, Atmospheric Research, 178-179, 231–259, https://doi.org/10.1016/j.atmosres.2016.03.017

Ogino, S.-Y., M. D. Yamanaka, S. Mori, and J. Matsumoto (2017), Tropical coastal dehydrator in global atmospheric water circulation. Geophys. Res. Lett. 44, 11638–11643, https://doi.org/10.1002/2017GL075760 (Selected as AGU Research Spotlight: Rethinking How Water Circulates Between the Oceans and Land, https://eos.org/research-spotlights/rethinking-how-watercirculates-between-the-oceans-and-land)

Yamanaka, M. D., S.-Y. Ogino, P.-M. Wu, J.-I. Hamada, S. Mori, J. Matsumoto, F. Syamsudin (2018). Maritime continent coastilines controlling Earth's climate. Prog. Earth Planet. Sci., 5:21, <u>https://doi.org/10.1186/s40845-018-0174-9</u>

Background and objectives

- Previous view of ocean-land water circulation: evaluated a
- Satellite observation revealed dominance of tropical coastal precipitation.
- Objectives
 - 1. How much is the precipitation amount over the tropical costal region?
 - 2. Re-examine the oceanand water circulation taking into account tropical coastal precipitation

Methods

Data

- TRMM 3A25 Precipitation, 0.5°x0.5°, 37°S–37°N, 1997-2011 (13 years)
- JRA-55 Column water vapor flux, Precipitation,
- Evaporation, 1.25°x1.25°, Global, 1981-2010 (30 years) • GLOBE elevation, 30"x30", Global
- Distance from the coastline (DFC)
- Defined as a distance between each data cell and the nearest coastline

Precipitation as a function of DFC

Calculated from TRMM precipitation at each 50-km DFC bin

Landward water vapor transport TL

 calculated from JRA-55 column water vapor divergence assuming water budget relation (divQ=E-P)

Results

Land

Land

66 (11

1400 0 gino et al., 2016 (JC) 1200 50 1000 0 gino et al., 2016 (JC) 1000

Comparison b/w tropics and extra-tropics (20N-90N) (20S-20N) (20S-90S)

Discussions

- Climate maintenance and change • Rainwater volume due to tropical coastal precipitation 1 x 10¹⁴ m³/yr, which is corresponds to 20% of global total, and must considerably contribute the
 - total, and must considerably contribute the maintenance of global climate (Yamanaka et al., 2018). The maritime continent with the world's longest
- coastilines may produce the largest precipitation on Earth, which sustains the current Earth's global climate (Yamanaka, 2016).
- Coastline changes due to the sea level change, and continental aggregation and dispersal cause climate changes through the distribution and intensity changes in the coastal precipitation and the water circulation.
- Direct freshwater supply over the coastal ocean • Significant amount of net freshwater is supplied from the atmosphere to the coastal ocean, which is comparable to that of the land water discharge
- A new insight on the ocean salinity distribution and its associated dynamics, and on the adulterants distribution.