

Investigation of Convective Updrafts

IN COS

INCUS GOAL

Α

1111

* * * * * *

To understand why, when and where tropical convective storms form, and why only some storms produce extreme weather.

INCUS will provide the first ever tropics-wide observations of CMF

A

Convective Mass Flux (CMF) = the vertical transport of air and water

Convective Mass Flux – Storm Scales

Aerosols

INCUS Science Objectives

Objective 1: ENV \rightarrow CMF

Determine the predominant environmental properties controlling CMF in tropical convective storms

Objective 2: CMF \rightarrow High Clouds

Determine the relationship between CMF and high anvil clouds

Objective 3: CMF \rightarrow Current and Future Weather

Assess the relationship between CMF and type and intens the weather produced

Objective 4: CMF in Models

Evaluate these CMF observationally determined relationships in weather and climate models.

Unique Time Differencing (Δt) Approach

W of 15 m/s corresponds to ~1km/min

Rapidly sampling the cloud state in time provides information on the storm motion and hence CMF

Exploratorium.edu

van den Heever INCUS Kickoff Meeting 26 April 2022

Does it work?

20

15

10

5

0

-5

-10

-15

-20

PL

S

ε

Dolan et al., 2023

INCUS Made Possible by Miniaturization

JPDRAFTS CONVECTIVE ЦO **INVESTIGATION**

radiometer

RainCube and TEMPEST-D implemented as tech demos by NASA's ESTO

March 2018 | Volume 106 | Number 3 Proceedings of IEEE

SPECIAL ISSUE

Small Satellites

Point of View: How Is the Networked Society Impacting Us? Scanning Our Past: Who Invented the Earliest Capacitor Bank ("Battery" of Leyden Jars)? It's Complicated

Deployable Antenna

van den Heever INCUS Kickoff Meeting 26 April 2022

INCUS Baseline Mission

∆t=30secs

Blue Canyon Technologies X-SAT Venus commercial bus

> JPL cross-track scanning microwave radiometer (middle spacecraft only) (TEMPEST-D heritage; 165, 174, 178 and 181 ± 0.5 GHz)

JPL Ka-band radar with 5 beams (RainCube heritage)

- Applies a novel timedifferencing ($\Delta t = 30, 90$ and 120 sec) approach
- Rapidly sample the same storm systems to provide evolution of CMF
- Radiometer provides high cloud and contextual information
- Duration: 2 years
- ~330,000 convective cores at 39°

Tendeg deployable Ka-band antenna

∆t=90secs

-light Direction

Colorado State University

Jet Propulsion Laboratory California Institute of Technology Inclination: 22.5 to 39°
Launch:~ August 2026

∆t=120secs