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Deep convective organization in the Tropics

Organized deep convection is ubiquitous in the tropical atmosphere.

‣ Strong impacts on the circulation, radiation budgets, hydrological 
cycle.

‣ Extreme events often associated with organized convective 
systems.                                                                      
MCSs contribute ~50% of total tropical rainfall (Nesbitt et al., 2006; Tan 
et al., 2013).

From Holloway et al. (2017)
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Organized deep convection is ubiquitous in the tropical atmosphere.

‣ Strong impacts on the circulation, radiation budgets, hydrological 
cycle.

‣ Extreme events often associated with organized convective 
systems.                                                                      
MCSs contribute ~50% of total tropical rainfall (Nesbitt et al., 2006; Tan 
et al., 2013).

‣ What is convective organization in practice?                                                        
One possible definition: “nonrandomness in meteorological fields in 
convecting regions” (Mapes and Neale, 2011). 

‣ No unanimous definition of convective organization ➔ difficult 
to quantify in models and observations.

From Holloway et al. (2017)
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One particular regime of organization found in simulations is the spontaneous aggregation (self-aggregation) of convection.

Why is it such a hot topic in current climate research?

‣ It can act as a safety valve to regulate tropical climate.

‣ It has the potential to provide a negative feedback to global warming (Emanuel et al., 2014).

From Muller and Held (2012)

An intriguing behavior: convective self-aggregation
tim
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Very dry zone
➔ no absorption
by water vapor

From Bretherton et al. (2005)



‣ The occurrence of self-aggregation is dependent on the model setup and/or representation of physics.

O aggregated runs

x non-aggregated

‣ Models generally acknowledge the role of diabatic 
processes (radiative/surface flux feedbacks)…

…but show little consensus about

• degree and strength of aggregation

• temperature dependence of self-aggregation                        
(found also in snowball-Earth simulations!)

• and sometimes even about whether they undergo 
aggregation or not at all for a given experimental 
framework! From Muller and Held (2012)

So far so good, but…



Adapted from Wing et al. (2020)

Models and metrics do not agree

There are two sources of uncertainty:

① no consensus among the models

② no consensus among the organization 
metrics about the degree/strength of self-
aggregation.



Adapted from Wing et al. (2020)

Models and metrics do not agree

There are two sources of uncertainty:

① no consensus among the models

② no consensus among the organization 
metrics about the degree/strength of self-
aggregation.

The metrics reflect different conceptual views of 
the organization process.



Adapted from Wing et al. (2020)

Our research objectives

① Shed light on the sensitivities of self-
aggregation in CRMs and the differences 
across the models

We developed a minimal-physics model that 
retains the key aspects of the more complex ones, 
to be used as a diagnostic tool. 

Biagioli and Tompkins, JAMES, 2023 
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Our research objectives

① Shed light on the sensitivities of self-
aggregation in CRMs and the differences 
across the models

We developed a minimal-physics model that 
retains the key aspects of the more complex ones, 
to be used as a diagnostic tool.

Biagioli and Tompkins, JAMES, 2023 

② Better characterize the level of organization in 
models and observations

We defined a new organization metric that 
amends many drawbacks of a widely used one and 
captures organization over a range of spatial scales.

Biagioli and Tompkins, JAS, 2023 



A 2D stochastic reaction-diffusion model

Convective
moistening

Horizontal 
transport

Compensatory subsidence

CRH distribution

‣ Model closely related to that of Craig and Mack (2013).

‣ It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical 
column relative humidity (CRH), R = R(x,t), budget.

‣ Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions. 
Convective activity treated stochastically.

A 2D stochastic reaction-diffusion model of the tropical atmosphere



① How many cells do we select to develop convection?

The convective fraction , hence the number Nc of convective 
cells, is such as to obey continuity (externally imposed constraint): 

.

② How do we select the cells that develop convection?

According to weighted random sampling, with humidity-dependent 
probabilities (based on P-R relationship by Bretherton et al., 2004) 

.

σ

0 = w = σwc + (1 − σ)wsub ⇒ σ =
|wsub |

wc

pc(R) = C exp (adR)

The parameter  measures the strength of the convection-water vapor feedbackad

Adding stochastic effects: the selection of convective of cells



‣ Model closely related to that of Craig and Mack (2013).

‣ It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical 
column relative humidity (CRH), R = R(x,t), budget.

‣ Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions. 
Convective activity treated stochastically.

‣ In formulae (continuous form),

A 2D stochastic reaction-diffusion model of the tropical atmosphere

∂R
∂t

=
1
τc

(Rc − R)ℐc +K ∇2R −
R

τsub

Indicator function
          =1 in convective cells
            =0 in non-convective cells
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(fast) convective moistening
characteristic timescale

(constant) Relaxation target
(constant)

CONVECTIVE MOISTENING
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‣ Model closely related to that of Craig and Mack (2013).
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A 2D stochastic reaction-diffusion model

‣ Model closely related to that of Craig and Mack (2013).

‣ It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical 
column relative humidity (CRH), R = R(x,t), budget.

‣ Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions. 
Convective activity treated stochastically.

‣ In formulae (continuous form),

A 2D stochastic reaction-diffusion model of the tropical atmosphere

∂R
∂t

=
1
τc

(Rc − R)ℐc +K ∇2R −
R

τsub

CONVECTIVE MOISTENING

(slow) drying timescale
(parameter) 

τsub ≫ τc

SUBSIDENCE
LATERAL

TRANSPORT



A closer look at the model’s physics

• Convective spikes

• Subsidence in the far-field

• Convection more easily develops 
in moister-than-average areas, as 
per the functional form of 

• Subsidence and diffusion create 
moist halos around convection: 
area of influence K sub (units m2)

pc(R)

τ

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/animation_1d.mp4


The model mimics convective clustering

RANDOM AGGREGATED

Depending on the parameter settings, the model produces random/aggregated states, similar to those seen in CRMs.
DEFAULT EXPERIMENTAL SETUP

- Doubly periodic domain with size  km, spacing 
 km. Horizontally homogeneous initialization, .

-     days     (TRMM v7)   

L = 300

Δx = 2 R0 = 0.8

K = 𝒪(104) m2s−1 τsub ∼ 16 ad = 14.72
Animation here

http://clima-dods.ictp.it/Users/gbiagiol/regimes.mp4


The model mimics convective clustering and reproduces many aspects of CRMs

‣ Perturbing the model key parameters can trigger aggregation.
Aggregation favored by - weaker diffusion (lower K)

               - stronger subsidence (shorter sub)
                 - stronger convection-vapor feedback (larger ad)
                 - larger domains (larger L), as in CRMs

τ



The model mimics convective clustering and reproduces many aspects of CRMs

INCREASING DOMAIN SIZE
AGGREGATION MORE LIKELY

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/dom_size.mp4


The model mimics convective clustering and reproduces many aspects of CRMs

‣ Perturbing the model key parameters can trigger aggregation.
Aggregation favored by - weaker diffusion (lower K)

               - stronger subsidence (shorter sub)
                 - stronger convection-vapor feedback (larger ad)
                 - larger domains (larger L), as in CRMs
                 - coarser resolutions (larger x), as in CRMs

τ

Δ

INCREASING RESOLUTION
AGGREGATION LESS LIKELY

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/hor_res.mp4


A new explanation for resolution sensitivity of self-aggregation in CRMs

INCREASING RESOLUTION
AGGREGATION LESS LIKELY

The mass conservation argument constrains the convective fraction , not number/size of convective cells.
Higher resolutions ➔ more (smaller) updrafts ➔ smaller inter-convective spacings ➔ aggregation inhibited.

σ

Our hypothesized mechanism is consistent 
with Sueki et al. (2019), Prein et al. (2021): 
the updraft width depends on the resolution.
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Animation here

http://clima-dods.ictp.it/Users/gbiagiol/hor_res.mp4


The largest clear-sky patch in the pre-organization phase

A key quantity is the expected size  of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts ➔ large convection-free areas ➔ subsidence dominates in the far-field ➔ convection-free areas further dry ➔ aggregation 
more likely.
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The largest clear-sky patch in the pre-organization phase

A key quantity is the expected size  of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts ➔ large convection-free areas ➔ subsidence dominates in the far-field ➔ convection-free areas further dry ➔ aggregation 
more likely.
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convective cells

Given Nc, L, x, the quantity  can be analytically calculated.

Its relevance to self-aggregation onset in CRMs has been confirmed by Casallas et al. (2025). 

Δ d̄



Key factors driving the transition to aggregated convection

A key quantity is the expected size  of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts ➔ large convection-free areas ➔ subsidence dominates in the far-field ➔ convection-free areas further dry ➔ aggregation 
more likely.

The other key ingredient is the area of influence K sub on the moisture field of a single deep convective event.
Large K sub ➔ efficient environmental moistening/weak drying ➔ humidity halos enlarged ➔ aggregation less likely.

d̄

τ
τ



A dimensionless parameter to predict the development of self-aggregation

A key quantity is the expected size  of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts ➔ large convection-free areas ➔ subsidence dominates in the far-field ➔ convection-free areas further dry ➔ aggregation 
more likely.

The other key ingredient is the area of influence K sub on the moisture field of a single deep convective event.
Large K sub ➔ efficient environmental moistening/weak drying ➔ humidity halos enlarged ➔ aggregation less likely.

Putting pieces together, we introduce a dimensionless parameter, the aggregation number Nag

d̄

τ
τ

Nag =
Kτsub

L2

1
d̄
L

1
a2

d
Nag =

Kτsub
a2

dLd̄
Rescaled area of 

influence
Rescaled size of max 

clear-sky patch

Assessed through fits 
from model data

⇒



A dimensionless parameter to predict the development of self-aggregation

A key quantity is the expected size  of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts ➔ large convection-free areas ➔ subsidence dominates in the far-field ➔ convection-free areas further dry ➔ aggregation 
more likely.

The other key ingredient is the area of influence K sub on the moisture field of a single deep convective event.
Large K sub ➔ efficient environmental moistening/weak drying ➔ humidity halos enlarged ➔ aggregation less likely.

Putting pieces together, we introduce a dimensionless parameter, the aggregation number Nag

d̄

τ
τ

Nag =
Kτsub
a2

dLd̄
Low Nags High Nags

CLUSTERING RANDOMNESS



Nag has a predictive power

High : 
clustered states 

σ̄R,20

Low : random states(CRH field quasi-homogeneous)

σ̄R,20

Threshold value of Nag

(obtained with minimization 
procedure)

“Pitch invasions” 
(due to stochastic effects)

Ensemble of  simulations.
Each symbol represents an experiment with its 
own Nag vs , spatial CRH standard 
deviation averaged over last 20 (out of 180) 
days of simulation.

𝒪(1000)

σ̄R,20



Nag has a predictive power

High : 
clustered states 

σ̄R,20

Low : random states(CRH field quasi-homogeneous)

σ̄R,20

Threshold value of Nag

(obtained with minimization 
procedure)

“Pitch invasions” 
(due to stochastic effects)

Ensemble of  simulations.
Each symbol represents an experiment with its 
own Nag vs , spatial CRH standard 
deviation averaged over last 20 (out of 180) 
days of simulation.

Nag robustly indicates which model and 
experiment setups result in aggregation (i.e., 
those for which Nag < Nag,crit 1.72 x 10-3).

If we can project the initial random state 
fields and diagnose K, sub and ad from 
CRMs, Nag should predict if a specific run is 
expected to cluster or not.

𝒪(1000)

σ̄R,20

∼

τ



Adapted from Wing et al. (2020)

Back to organization indices: some room for improvement?

Main drawbacks of the existing metrics:

① Organization measured in a relative sense.

② Some spatial scales are “favored” (e.g., Iorg).

③ Sensitivity to details of calculation 
algorithm.

④ Non-linear assessment of organization 

( ). σ2
CRH

We conducted a systematic review 
of existing indices to date, see 
Biagioli and Tompkins, JAS, 2023.

See also Mandorli and Stubenrauch, 
GMD, 2024, for an assessment of 
metrics



A focus on Iorg

Given a cloud field scene,
Synthetic scene,

periodic boundaries

convective objects
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we compute two cumulative distribution functions (CDFs)…                                               …and we compare them to give Iorg.             

① The CDF  of the nearest-neighbor                                                                                          
 distances (NNDs) in that scene,

̂F Iorg is the area under the joint CDF.  

A focus on Iorg

Given a cloud field scene,

② The CDF  of NNDs if the same number of 
cloud objects were randomly distributed,

F

, Iorg = 0.56 RIorg = 0.06
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YWe also introduce the relative Iorg, RIorg, as the integral of , i.e., .

Iorg/RIorg categorize scenes as 
- random (Iorg = 0.5, RIorg = 0), 
- clustered (Iorg > 0.5, RIorg > 0),
- regular (Iorg < 0.5, RIorg < 0).

̂F − F RIorg = Iorg − 0.5



Pros and cons of Iorg

✓Theoretical null to compare against (Poisson point 
process)

✓Measures organization in an absolute sense (cf. point ① 
listed before)

❌ Sensitive to event number and positions

❌ Blind to organization beyond the β-mesoscale 
(20-200 km), cf. Orlanski (1975).𝒪
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Why don’t we broaden our horizons?

base point (for neighbor count)
points of the spatial pattern (i.e., clouds)
neighbors of  within distance r 

We will use a commonly 
used tool in the statistics 
analysis of spatial point 
patterns: the L-function  
mean number of neighbors 
of a cloud object as a 
function of spatial scale r.

∼

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/Lfunction.mp4


Towards the definition of a new index, Lorg

Given a cloud field scene, Synthetic scene, 
randomly distributed convection,

periodic boundaries

convective objects

we compute            

① The theoretical reference L-function ,L̃
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Towards the definition of a new index, Lorg

Given a cloud field scene, Synthetic scene, 
randomly distributed convection,

periodic boundaries

convective objects

we compute            

① The theoretical reference L-function ,

② the L-function  derived from the distribution of objects in the scene,

③ the integral departure  to give Lorg.

The scenes are classified as - random (Lorg = 0),
                                      - clustered (Lorg > 0),                                                   
                                      - regular (Lorg < 0).
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A correction is needed for periodic boundary conditions

Synthetic scene, 
randomly distributed convection,

periodic boundaries

convective objects

①

②

????



A discrete counterpart for the analysis of gridded data

In practical applications (analysis of model output data/observational datasets) we consider finite, discrete grids. 

The evaluation of neighbor count is now performed over square observation boxes of size . ℓn = nΔx
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(a) Continuous case
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(c) Continuous case
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Capturing organization beyond the β-mesoscale  
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The L-functions can capture the 
different regimes of organization in 
the short- and long-range. 

⏟Search box sizes / max search box size 
in the given domain (i.e., domain size)



Application to model output data

‣ Idealized stochastic 
model for tropical 
convection introduced 
before.

‣ Iorg “saturates” almost 
immediately.

‣ New index evolves 
smoothly across various 
degrees of self-
aggregation. 

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/indices.mp4


Application to observations

• IMERG precipitation data.

• 8 mm/h rain rate threshold to identify 
convective cells.

• Local maximum method also applied to isolate 
most vigorous updraft cores (cf. Bony et al., 
2020).

• Scenes with <15 convective objects excluded 
(Iorg can be very noisy, cf. Semie and Bony, 
2020). 

New index much less temporally noisy 
and far more robust to calculation 
details than Iorg.

Animation here

http://clima-dods.ictp.it/Users/gbiagiol/obs_indices.mp4


A summary

Can we understand the sensitivities of self-aggregation as found in CRMs with a toy model? 

We introduced a model that reduces CRM complexity as much as possible, retaining only the essential physics. The effects 
of each process can be easily disentangled from the others. 

A new explanation is offered for domain size and horizontal resolution sensitivities of self-aggregation found in CRMs.

A new dimensionless parameter predicts self-aggregation onset in the simple model. Is it applicable as a diagnostic to CRMs?

Can we better (or complementarily) measure convective organization in model output and observations? 

A new metric, Lorg, is introduced, which is similar to a popular one, Iorg, in its theoretical foundations (comparison of two 
distance distribution functions), with NNCDFs replaced by L-functions.

New metric captures organization over a range of scales and also far more robust to calculation details than Iorg.

Lorg suitable for measuring organization strength in model inter-comparison studies and in a wide variety of observations.
Main con: it is more computationally burdensome than Iorg!


