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Deep convective organization in the Tropics
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MCSs contribute ~50% of total tropical rainfall (Nesbrtt et al., 2006; Tan
et al,, 2013).

From Holloway et al. (2017)
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MCSs contribute ~50% of total tropical rainfall (Nesbrtt et al., 2006; Tan
et al,, 2013).

» What Is convective organization In practice?

One possible definition: “nonrandomness in meteorological fields in
convecting regions’ (Mapes and Neale, 201 |).

» No unanimous definition of convective organization => difficult
to quantify in models and observations.

From Holloway et al. (2017)



An intriguing behavior: convective self-aggregation

One particular regime of organization found in simulations is the spontaneous aggregation (self-aggregation) of convection.

Clouds (white surfaces), near-surface temperature K (colors)
15 — (a) L=198km: disorganized convection
298

296

294

y (km) i 50

X (km)
From Muller and Held (2012)
15 — (b) L=510km: convection self-aggregates
298
ik 206
0 <
294

200

y (km) 0 =9

X (km)

Why is It such a hot topic in current climate research!?




An intriguing behavior: convective self-aggregation

One particular regime of organization found in simulations is the spontaneous aggregation (self-aggregation) of convection.
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Why is It such a hot topic in current climate research!?

[t can act as a safety valve to regulate tropical climate.

200
X [km]

[t has the potential to provide a negative feedback to global warming (Emanuel et al., 2014). From Bretherton et al

400



So far so good, but...

» The occurrence of self-aggregation Is dependent on the model setup and/or representation of physics.

» Models generally acknowledge the role of diabatic (a) homogeneous IC (b) aggregated IC
processes (radiative/surface flux feedbacks)...

...but show little consensus about

* degree and strength of aggregation

* temperature dependence of self-aggregation

(found also in snowball-Earth simulations!)

* and sometimes even about whether they undergo

aggregation or not at all for a given experimental dx (km)

From Muller and Held (201 2)

framework!




Models and metrics do not agree
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Our research objectives
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A 2D stochastic reaction-diffusion model of the tropical atmosphere

» Model closely related to that of Cralg and Mack (2013).

» It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical
column relative humidity (CRH), R = R(x,t), budget.

» Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions.

Convective activity treated stochastically.
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Adding stochastic effects: the selection of convective of cells

(D How many cells do we select to develop convection?

The convective fraction o, hence the number Nc of convective
cells, is such as to obey continuity (externally imposed constraint):
‘ Wsub ‘

We

O=w=0ow,+( —-0o)wp=>0=

(2 How do we select the cells that develop convection?

According to weighted random sampling, with humidity-dependent
probabilities (based on P-R relationship by Bretherton et al, 2004)

p(R) = Cexp (a,R).

The parameter a,; measures the strength of the convection-water vapor feedback




A 2D stochastic reaction-diffusion model of the tropical atmosphere

» Model closely related to that of Cralg and Mack (2013).

» It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical
column relative humidity (CRH), R = R(x,t), budget.

» Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions.

Convective activity treated stochastically.

» In formulae (continuous form),

CONVECTIVE MOISTENING

tsub
2
&
(fast) convective moistening Indicator function
characteristic timescale =| in convective cells
(constant) Relaxation target =0 in non-convective cells

(constant)




A 2D stochastic reaction-diffusion model of the tropical atmosphere

» Model closely related to that of Cralg and Mack (2013).

» It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical
column relative humidity (CRH), R = R(x,t), budget.

» Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions.

Convective activity treated stochastically.

» In formulae (continuous form),
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A 2D stochastic reaction-diffusion model of the tropical atmosphere

» Model closely related to that of Cralg and Mack (2013).

» It represents the effects of convective moistening, lateral transport and subsidence drying on the tropical
column relative humidity (CRH), R = R(x,t), budget.

» Governing equation integrated on a 2D mesh of grid points, using CRM-like domain sizes and resolutions.

Convective activity treated stochastically.

» In formulae (continuous form),

LATERAL
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(slow) drying timescale
(parameter)
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A closer look at the modeP’s physics
K =10000 m2s™%, tsyp =15 days, ag = 14.72, Ax=1km, At=12.5s

Column Relative Humidity R: t=0.0 s

—— R field ---=I|nitial state
1.05 - e Convective spikes
e Subsidence in the far-field
1.00 -
e Convection more easily develops
0.95 - N moister-than-average areas, as
Animation here per the functional form of p-(R)
0.90 - e Subsidence and diffusion create
moist halos around convection:
0.85 - area of influence Kz, (Units m?)
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0-75 | | | | | |
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http://clima-dods.ictp.it/Users/gbiagiol/animation_1d.mp4

The model mimics convective clustering

Depending on the parameter settings, the model produces random/aggregated states, similar to those seen in CRMs.

DEFAULT EXPERIMENTAL SETUP

- Doubly periodic domain with size L = 300 km, spacing

Ax = 2 km. Horizontally homogeneous initialization, R, = 0.8.
- K=0(10" m2s-1 ¢, ~ 16 days a,=14.72 (IRMM v/)

Animation here

RANDOM  AGGREGATED
day 0.00, K=10000 m?s~* day 0.00, K=5000 m?s~* CRH

0 100 200 300 O 100 200 300
x (km) x (km)



http://clima-dods.ictp.it/Users/gbiagiol/regimes.mp4

The model mimics convective clustering and reproduces many aspects of CRMs

» Perturbing the model key parameters can trigger aggregation.
Aggregation favored by - weaker diffusion (lower K)
- stronger subsidence (shorter Tsub)
- stronger convection-vapor feedback (larger aq)
- larger domains (larger L), as in CRMs




The model mimics convective clustering and reproduces many aspects of CRMs

day 0, L = 1000 km CRH

1000

Animation here

day 0, L =500 km
500 :
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—
INCREASING DOMAIN SIZE
AGGREGATION MORE LIKELY



http://clima-dods.ictp.it/Users/gbiagiol/dom_size.mp4

The model mimics convective clustering and reproduces many aspects of CRMs

» Perturbing the model key parameters can trigger aggregation.
Aggregation favored by - weaker diffusion (lower K)

- stronger subsidence (shorter Tsub)
- stronger convection-vapor feedback (larger aq)
- larger domains (larger L), as in CRMs

- coarser resolutions (larger Ax), as in CRMs

day 0, Ax =4 km day 0, Ax =2 km day 0, Ax=1 km day 0, Ax=0.5 km CRH
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http://clima-dods.ictp.it/Users/gbiagiol/hor_res.mp4

A new explanation for resolution sensitivity of self-aggregation in CRMs

The mass conservation argument constrains the convective fraction ¢, not number/size of convective cells,

Higher resolutions =» more (smaller) updrafts =» smaller inter-convective spacings =2 aggregation inhibrted.

[,
-
(8]

E

= 10?: : e
. = | = median
& N |- P25 ;
Q& . o . g 109| - P75 é
(SDV' Our hypothesized mechanism Is consistent e é
B | et g

with Sueki et al. (2019), Prein et al. (2021): " i =

| | E=Z E E A E

the updraft width depends on the resolution. o & ==

10

1.0
0.8
0.6
ORI |04
N PR | 0.2
O 100 200 300 O 100 200 300 O 100 200 300 O 100 200 300
X (km) X (km) x (km) % (km)

Animation here

—
INCREASING RESOLUTION
AGGREGATION LESS LIKELY



http://clima-dods.ictp.it/Users/gbiagiol/hor_res.mp4

|ON

-free areas further dry = aggregat

|ON

tes in the far-field = convect

INd

S SN/
S S S S S SN S S S S/
S SN SN/
S SN/
S SN/
LSS S S S SSS S S S S S S S S S S S S S S S S S S S S S S S S

NS NNNNNNNNNNN NINNSNNNNNN
NN NN NN NN AN N
NANNSANNNNNNNNNINUNSYNNNYNNANNNNNNY
NSANTINNNINNNNNNRINNEINNNENNNNNNNANY
e N N e R e N S N RS
NANNNANNNNNNNNNNINNNEIYNNNNNNNNNNN
SETIRNRINNTIRNNRNNTEINNNENNNNNNYNNY
SOAUONNANN NN N NNNRNANNNANNNANANNNANNNN
NANNANNNNNNNNNINNNINNNYNNANNNNNNY
NENTEYTREINNIRNNRNNRNNNNENNNNNNNNNNNY
NAUONUNANNNNNNNNNANNNANNNANANANNNNNNY
NANNANNNNNNNNNINNEINNNYNNNNNNNNY
AR RARRRRLR R AL R AR R AR RARRARRILARRALR
NANNANNNNNNNNNINNNYANNNYNANNNNNNY
NANNNANNNNNNNNNINNEINANNNNNNNNNN
ARARRRRRIIRRLRRALRRARRARRARRINRRILR
NSANNANNNNNNNNNINNNYANNNYNANANNNNNNY
NANNNANNNNNNNNNINNNAIANANNYNNNNNNNNY
NN NN NN N NN NN NN AN N
NSANNNANNNNNNNNNNINUNYNANNNNNNNNNN
////////////////////////////i
ANANNANNNNNNNNNNNNNNNNNNNNNNNNN
. NANNSANNNNNNNNNINN I NNNYNNANNNNNNY
SETETIRNIRNNTNRNNRINNENNNENNNNNNNNY
SAONUNANNANUNNN N NARURNNNUNNINNNANN NN NN
NANNANNNNNNNNNINNNINNNYNNANNNNNNY
SENTIRNTIRNNRNNRNNNENNNNNNNNNNNNY
SNOAUONUNANNANNNNNNNNNNANNNNANNANNNNY
NANNNANNNNNNNNNINUNNYNNNYNANANNNNNNY
ARRRRRARRRRRARRR AR LRARRARRRRRARRRARRRRARRN |
NNNNNNNNNNNNANNANN NANNNINNNNNNINNNNNNYNNNNNY
NNNNNNNNNNNNANNANN NSANNNNNNNNNINNNNNNNNNANN
NONNNNNNNNNNNANNANYN NANNNINNNNNNINNNNNNYNNNNNY
NSNNNNNNNNNNNANANANN NSANNNINNNNNNINNNNNNYNNNNNNY
NANNNNNNNNNNNNNNANN NANNNINNNNNNINNNNNNYNNNNNY
NNNNNNNNNNNNNNNNN AR R AR RARRRARRRARRARRRRRRRRR
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NN NN NN NN
NNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNANANY
NANNNNNNNNNNNNNNANN NANNNNNNNNNNNINNNNNNNNNNNY
NONNNNNNANNNNNNNNANN e e N S S S S R
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNNANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NNNNNNNANANN AR NSANNNNNNNNNNNINNNNNNNNNNNNY
NONUONNNNNNNNNNN NOUNNNNNNNNNNANNNNNNNNNANNNY
NNNNNNNNNNNANN NANNNNNNNNNNNINNNNNNYNNNNNY
NSONNNNNNNNNNANANN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
SNNNNNNNNNNNNNNNN NSNNNNNAIENNNNNNYNNNNNNYNNNNNY
NSANNNNNNNNNNNNNNANN NSANNNNNNNNNNTINNNNNNNANANANN
NNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NSNNNNNNNNNNNNNNNN NANNNNNNNNNNNINNNNNNNNNNNY
NONNNNNNNNNNNNNNNN NNNNNNNNNNNNINNNNNNYNNNNNNY
SN NNNNNNNNNNXNN STTTTRTTITRTRETERNRNRNNNNNNXNXY
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNRINNNNNNNNANANN
NSNNNNNNNNNNNNNNNN NSANNNNNNNNNNTINNNNNNNNANANN
NANNNNNNNNNNNNNNNN NANNNANNNNNNNNRINNNNNNNNANANN
NSNNNNNNNNNNNNNNNN NANNNNNNNNNNTINNNNNNNNANANN
NNNNNUNNNNNNNNNNNN AR R R R AR R R R RARARRARRRRR RN
NSNNNNNNNNNNNNNNNN NANNNNNNNNNNTINNNNNNNNANANN
NSNNNNNNNNNNNNANN NSANNNNNNNNNINNNNNNNNNANN
NNNNNNNNNNNNANNANN NSANNNAINNNNNNINNNNNNNNANANN
NNNNNNNNNNNNANNANN NANNNNAENNNNNNNNNNNNNNNNN
NNNNNNNNNNNNANNANN NANNNNAENNNNNNAINNNNNNNNNNN

A key quantity is the expected size d of the maximum convection-free area in the pre-onset (random) phase.

Few updrafts => large convection-free areas = subsidence dom

more likely.

The Ilargest clear-sky patch in the pre-organization phase
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The Ilargest clear-sky patch in the pre-organization phase

A key quantity is the expected size d of the maximum convection-free area in the pre-onset (random) phase.
Few updrafts = large convection-free areas =2 subsidence dominates in the far-field =» convection-free areas further dry = aggregation
more likely.
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Given N, L, Ax, the quantity d can be analytically calculated.

[ts relevance to self-aggregation onset in CRMs has been confirmed by Casallas et al. (2025).




Key factors driving the transition to aggregated convection

A key quantity is the expected size d of the maximum convection-free area in the pre-onset (random) phase.

Few updrafts = large convection-free areas =2 subsidence dominates in the far-field =» convection-free areas further dry = aggregation
more likely.

he other key ingredient Is the area of Influence Kzsus on the moisture field of a single deep convective event.

Large Kzsup =2 efficient environmental moistening/weak drying =» humidity halos enlarged = aggregation less likely.




A dimensionless parameter to predict the development of self-aggregation

A key quantity is the expected size d of the maximum convection-free area in the pre-onset (random) phase.

Few updrafts = large convection-free areas =2 subsidence dominates in the far-field =» convection-free areas further dry = aggregation
more likely.

he other key ingredient Is the area of Influence Kzsus on the moisture field of a single deep convective event.

Large Kzsup =2 efficient environmental moistening/weak drying =» humidity halos enlarged = aggregation less likely.

Putting pieces together, we introduce a dimensionless parameter, the aggregation number Ny,
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A dimensionless parameter to predict the development of self-aggregation

A key quantity is the expected size d of the maximum convection-free area in the pre-onset (random) phase.

Few updrafts = large convection-free areas =2 subsidence dominates in the far-field =» convection-free areas further dry = aggregation
more likely.

he other key ingredient Is the area of Influence Kzsus on the moisture field of a single deep convective event.

Large Kzsup =2 efficient environmental moistening/weak drying =» humidity halos enlarged = aggregation less likely.

Putting pieces together, we introduce a dimensionless parameter, the aggregation number Ny,
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Nqs has a predictive power
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Nqs has a predictive power
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| Nog robustly indicates which model and |
| experiment setups result in aggregation (i.e.]
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f we can project the inrtial random state

fields and diagnose K, zsub and dq from
CRMs, Ngg should predict if a specific run is
expected to cluster or not.
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Back to organization indices: some room for improvement?
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A focus on lorg

Gliven a cloud field scene, |
Synthetic scene,

periodic boundaries

s convective objects




A focus on lorg

Given a cloud field scene,

we compute two cumulative distribution functions (CDFs). ..

D The CDF F of the nearest-neighbor
distances (NNDs) in that scene,
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A focus on lorg

Given a cloud field scene,

we compute two cumulative distribution functions (CDFs). ..

(1) The CDF F of the nearest-neighbor (@) The CDF F of NNDs if the same number of

distances (NNDs) in that scene, cloud objects were randomly distributed,
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A focus on lorg

5
Gliven a cloud field scene, 00
E
x 250
>
0
we compute two cumulative distribution functions (CDFs). .. ...and we compare them to give lor.

(1) The CDF F of the nearest-neighbor (@) The CDF F of NNDs if the same number of

distances (NNDs) in that scene, cloud objects were randomly distributed,
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A focus on lorg

. 500
Gliven a cloud field scene,
E
< 250
>
0
we compute two cumulative distribution functions (CDFs). .. ...and we compare them to give lor.
(1) The CDF F of the nearest-neighbor @) The CDF F of NNDs if the same number of lorg 15 the area under the joint CDF.
distances (NNDs) in that scene, cloud objects were randomly distributed,
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A focus on lorg

. 500
Gliven a cloud field scene,
E
x 250
>
0
we compute two cumulative distribution functions (CDFs). .. ...and we compare them to give lor.
(1) The CDF F of the nearest-neighbor @) The CDF F of NNDs if the same number of lorg 15 the area under the joint CDF.
distances (NNDs) in that scene, cloud objects were randomly distributed,

We also introduce the relative lorg, Rlorg, as the integral of F—F,ie, RI,,=1,,—0.5.

org

lore/ Rlore Categorize scenes as
- random (lorg = 0.5, Rlorg = 0),
- clustered (lorg > 0.5, Rlorg > 0),
- regular (lors < 0.5, Rlorg < 0).




Pros and cons of lorg

v Theoretical null to compare against (Poisson point
DIrocess)

v Measures organization in an absolute sense (cf. point (D
isted before)

X Sensitive to event number and positions

X Blind to organization beyond the [(3-mesoscale
0 (20-200 km), cf. Orlanski (1975).
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Why don’t we broaden our horizons?

Animation here

D
o W
o
o
o
.
o
Y
» .
o
o
o
o > .
X

® base point (for neighbor count)
® points of the spatial pattern (l.e., clouds)
® neighbors of @ within distance r

We will use a commonly
used tool In the statistics
analysis of spatial point
patterns: the L-function ~
mean number of neighbors
of a cloud object as a
function of spatial scale r.



http://clima-dods.ictp.it/Users/gbiagiol/Lfunction.mp4

Towards the definition of a new index, Lorg
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Towards the definition of a new index, Lorg

Given a cloud field scene, 200
£ 250
>
0
0 250 500
X (km)

we compute

(1) The theoretical reference L-function Z,

(2 the L-function i derived from the distribution of objects in the scene,
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Towards the definition of a new index, Lorg

Given a cloud field scene, 200
£ 250
>
0
0 250 500
X (km)

we compute

(D The theoretical reference L-function L,
(2 the L-function i derived from the distribution of objects in the scene,

(3 the integral departure i — L to give Lo

The scenes are classified as - random (Loz = 0),

- clustered (Log > 0),

- regular (Log < 0).
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Towards the definition of a new index, Lorg
500

Given a cloud field scene,

0 250 500
X (km)

we compute

(D The theoretical reference L-function L,
(2 the L-function i derived from the distribution of objects in the scene,

(3 the integral departure i — L to give Lo

The scenes are classified as - random (Loz = 0),

- clustered (Log > 0),

- regular (Log < 0).
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A correction is needed for periodic boundary conditions

500 .
Synthetic scene,
’é\ randomly distributed convection,
< 250 periodic boundaries
2 ® convective objects
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A discrete counterpart for the analysis of gridded data

In practical applications (analysis of model output data/observational datasets) we consider finite, discrete grids.

The evaluation of neighbor count is now performed over square observation boxes of size £, = nAx.

(a) Continuous case (b) Discrete case
D D
A x
© IV i
O . q Jm
o H
y [
O — .
o i n
¢ o - -

X X



Capturing organization beyond the f-mesoscale
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Capturing organization beyond the f-mesoscale

500
{33
—_ ..; -.. ':# "
- c . e ¥s
é 250 7 .:. . : .
>\ ] 5:.. .l‘ ..'..
(] '. . .b
M )
0) |
500
P o P
0 ot E e
:‘% 250 -
>
£ I
i o i
0) |
0 250
X (km)

500

0.0 0.5 1.0

Search box sizes / max search box size
in the given domain (i.e., domain size)

The L-functions can capture the
different regimes of organization in
the short- and long-range.




Application to model output data

» |dealized stochastic day 0.00
model for tropical (b) Rlorg = — 0.01 (c) dLorg = 0.00
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http://clima-dods.ictp.it/Users/gbiagiol/indices.mp4

Application to observations

* IMERG preciprtation data.

* 8 mm/h rain rate threshold to identify
convective cells.

* Local maximum method also applied to isolate
most vigorous updraft cores (cf. Bony et al,,

2020).

* Scenes with <|5 convective objects excluded
(lore can be very noisy, cf. Semie and Bony,

2020).

| New index much less temporally noisy |

{and far more robust to calculation

details than lo,.

13 Oct 2016 17:30 UTC
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http://clima-dods.ictp.it/Users/gbiagiol/obs_indices.mp4

A summary

Can we understand the sensitivities of self-aggregation as found in CRMs with a toy model?

We introduced a model that reduces CRM complexity as much as possible, retaining only the essential physics. The effects
of each process can be easlly disentangled from the others.

A new explanation is offered for domain size and horizontal resolution sensitivities of self-aggregation found in CRMs.

A new dimensionless parameter predicts self-aggregation onset in the simple model. Is it applicable as a diagnostic to CRMs?

Can we better (or complementarily) measure convective organization in model output and observations?

A new metric, Lorg, IS INtroduced, which is similar to a popular one, lorg, In 1ts theoretical foundations (comparison of two
distance distribution functions), with NNCDFs replaced by L-functions.

New metric captures organization over a range of scales and also far more robust to calculation detalls than o,

Lorg Surtable for measuring organization strength in model inter-comparison studies and In a wide variety of observations.
Main con: it 1Is more computationally burdensome than lor!
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