8th GEWEX Open Science Conference: Extremes and Water on the Edge, 6-11 May 2018, Canmore, Alberta, Canada

Modeling the Land Use and Land Cover Changes in the Euphrates & Tigris Basin:

How Does It Affect the Regional Water Budget and Energy Balance Under a Changing Climate?

Yeliz Yılmaz^{1,2*}, Ömer L. Şen¹, Ufuk U. Turunçoğlu³

¹Istanbul Technical University, Eurasia Institute of Earth Sciences

²National Center for Atmospheric Research, Research Visitor @ CGD, TSS

³Istanbul Technical University, Informatics Institute

*yelizyilmaz@itu.edu.tr

Harran Plain, Turkey Image source : Sentinel-2 - 2016

image source: Dowling, Mike.

- Snow-fed transboundary river basin
- Future simulations
 - Precipitation decrease in headwaters region
 - Projected peak streamflow occurs earlier in the year
- Southeastern Anatolia Project
 - Irrigated cultivation

Motivation

Euphrates & Tigris Basin (ETB)

Bozkurt and Sen, J. of Hydrol.,2013

Southeastern Anatolia Project (GAP)

Southeastern Anatolia Project (GAP)

Landsat images show the area before (a) and after (b) the Ataturk Dam was built. <u>https://visibleearth.nasa.gov/view.php?id=3796</u>

Irrigated Area

2016
 502,154 ha

Future 1.8 million ha 22 dams 19 HPP

Extension of the irrigated areas in the Harran Plains. https://earthobservatory.nasa.gov/Features/HarranPlains/

Istanbul Technical University

Objectives

- To reveal the effect of LULC changes on the current climate and water resources of the region
- To calculate the water loss via evapotranspiration due to the extension of irrigated cultivation
- To evaluate how LULC changes affect the regional water budget under a changing climate

Method

- Dynamical downscaling (regional climate model)
 - RegCM4 (revision 4283)

image source : F. Giorgi, WMO Bulletin 57(2), 2008

GCM	Model Name	Modeling Center (or Group)	Resolution (lat,lon)
1	BCC CSM1	Beijing Climate Center, China	2.8x2.8
2	BCC CSM 1M	Meteorological Administration	1.1x1.1
3	BNU ESM	College of Global Change and Earth System Science, Beijing Normal University	2.8x2.8
4	CCCMA CM4	Canadian Centre for Climate	2.8x2.8
5	CCCMA ESM2	Modelling and Analysis	2.8x2.8
6	CCSR ESM	Atmosphere and Ocean Research	2.8x2.8
7	CCSR ESM CHEM	Institute (The University of Tokyo),	2.8x2.8
8	CCSR MIROC4H	National Institute for	0.56x0.56
9	CCSR MIROC5	Agency for Marine-Earth Science and Technology	1.4x1.4
10	CMCC CM	Centro Euro-Mediterraneo per I	0.75x0.75
11	CMCC CMS	Cambiamenti Climatici	1.8x1.8
12	CNRM CM5	Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique	1.4x1.4
13	CSIRO AC10	Commonwealth Scientific and	1.25x1.8
14	CSIRO AC13	Industrial Research Organization in	1.25x1.8
15	CSIRO MK6	Collaboration with Queensland Climate Change Centre of Excellence	1.8x1.8
16	ECMWF EC EARTH	EC-EARTH consortium	1.1x1.1
17	FIO ESM	The First Institute of Oceanography, SOA, China	2.8x2.8
18	GFDL CM3	NOAA Geophysical Fluid Dynamics	2x2.5
19	GFDL ESM2G	Laboratory	2x2.5
20	GFDL ESM2M		2x2.5
21	GISS E2H	NASA Goddard Institute for Space	2x2.5
22	GISS E2H-CC	Studies	2x2.5
23	GISS E2R		2x2.5
24	GISS E2R-CC		2x2.5

GCM	Model Name	Modeling Center (or Group)	Resolution (lat,lon)
25		Institute for Numerical Mathematics	1 5x2
26		Institut Diarra Simon Lanlaca	1 9x3 75
	IPSI CM5AMR		1.25x2.5
28	IPSL CM5BLR		1.9x3.75
29	LASG FGOALSG2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua	2.8x2.8
30	LASG FGOALSS2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences	1.6x2.8
31	MPI ESMLR	Max-Planck-Institut für	1.9x1.9
32	MPI ESMMR	Meteorologie (Max Planck Institute	1.9x1.9
		for Meteorology)	
33	MPI ESMP		1.9x1.9
34	MRI CGCM3	Meteorological Research Institute	1.1x1.1
~-		National Center for Atmospheric	
35	NCAR CCSM4	Research	0.9x1.25
36	NCAR CESM1-BGC		0.9x1.25
37	NCAR CESM1-CAM5	Community Fouth Contours Mardal	0.9x1.25
38	NCAR CESM1-FCHEM	Community Earth System Model Contributors	0.9x1.25
39	NCAR CESM1-WACCM		1.9x2.5
40	NOR ESM1M	Norwegian Climate Centre	1.9x2.5
41	NOR ESM1ME		1.9x2.5
42	UKMO HADCM3	Mat Offica Hadlay Captro	2.5x3.75
43	UKMO HADGEM2AO	(additional HadGEM2-ES	1.25x1.875
44	UKMO HADGEM2CC	Instituto Nacional de Pesquisas	1.25x1.875
45	UKMO HADGEM2ES	Lopaciaisj	1 25x1 875
46	MMF GCM	Multi Model Ensemble	0.5x0.5
			0.0.010

Observation :

CRU (Climate Research Unit) TS v 4.01 (0.5°x0.5°)

http://www.cru.uea.ac.uk/cru/data/hrg/

Taylor Diagrams (whole domain - annual)

Study Domain

- Eastern Mediterranean and Black Sea (OD-48 km)
- Turkey (TR-12 km //with subgrid-3km)
- Euphrates & Tigris Basin

Model Configuration

Domain name	OD48 (48 km)	TR12 (12 km)	
Grid number (y,x), Vertical	75x95,	100x160,	Г
Resolution	18 level	23 level	
Center (latitude, longitude)	40, 32	38.7, 37	
Initial and Boundary	• NNRP, OI_WK	• OD48	
Conditions (atmosphere, sst)	• EC-EARTH	outputs	
Boundary Condition	12,12	18,18	
Parameters (nspgx,nspgd)			
Boundary Layer Model	Holtslag PBL	Holtslag PBL	
Cumulus Convection Scheme	Grell	Grell	
Cumulus Closure Scheme	Fritsch &	Fritsch &	
	Chappell	Chappell	
Moisture Scheme	SUBEX	SUBEX	
Ocean Flux Scheme	Zeng	Zeng	
Radiation Model	CCSM	CCSM	

Land surface processes in RegCM4

 BATS (Biosphere-Atmosphere Transfer Scheme)

Subgridding

(3 km resolution)

CLM (Community Land Model)

Landuse Maps

- GLCC (USGS)
- Non-irrigated

2000 period Current GAP (25%)

- CORINE (EEA)
- Partly irrigated

Future period Future GAP (%100)

- DSI (Turkish State Hydraulic Work)
- Fully irrigated

Experimental Design

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
2	NCEP/NCAR Reanalysis	Partly irrigated	1991-2010
3	NCEP/NCAR Reanalysis	Fully irrigated	1991-2010
4	EC-EARTH	Non-irrigated	1986-2008
5	EC-EARTH / RCP 4.5	Non-irrigated	2046-2065
6	EC-EARTH / RCP 8.5	Non-irrigated	2046-2065
7	EC-EARTH / RCP 4.5	Fully irrigated	2046-2065
8	EC-EARTH / RCP 8.5	Fully irrigated	2046-2065
9	EC-EARTH / RCP 4.5	Fully irrigated	2081-2100
10	EC-EARTH / RCP 8.5	Fully irrigated	2081-2100

Model Evaluation 48 km (1991-2008)

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
4	EC-EARTH	Non-irrigated	1986-2008

Effects of LULC change

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
2	NCEP/NCAR Reanalysis	Partly irrigated	1991-2010
3	NCEP/NCAR Reanalysis	Fully irrigated	1991-2010

Istanbul Technical University

Eurasia Institute of Earth Sciences

Conceptual diagram of the land-atmosphere interactions due to a change in soil moisture. The dashed lines show a positive feedback, while the dotted line represents a negative feedback. Figure is adopted from the studies of Pitman (2003), Lawrence & Slingo (2005) and Seneviratne et al. (2010).

-25

-10

0 10 25 50 100

-100 -50

Effects of LULC changes on the water budget

ΗW

What happens if we ONLY change the LULC?

- Land use and land cover changes cause
 - annual surface temperature decrease by about 0.4 °C and 0.8 °C (irrigation's cooling effect)
 - precipitation increase 3% and 7%, mostly in spring.
 (soil moisture ↑ ≫ latent heat flux ↑ ≫ convective precipitation ↑)
 - increase in evapotranspiration amounts by 51% and 114% compared to the pre-GAP conditions, which means significant water loss from the region.
- The increasing water demand of the irrigated region (GAP) is currently barely compensated including the downstream water release by the headwaters of the Euphrates & Tigris basin.

Let's add the effects of increasing greenhouse gas concentrations!

INTEGRATED Effects of LULC change + RCPs

No	Forcing Data	Land Use Map	Simulation Period
4	EC-EARTH	Non-irrigated	1986-2008
7	EC-EARTH / RCP 4.5	Fully irrigated	2046-2065
8	EC-EARTH / RCP 8.5	Fully irrigated	2046-2065

EC-EARTH driven 12 km simulations

2046-2065

Istanbul Technical University

100 200 400

600 800 1000 1400 1800

6 10 20 50 Eurasia Institute of Earth Sciences

-10 -5

Effects of RCP scenarios (GAP Region)

Integrated effects (LULC + RCPs)

Istanbul Technical University

Eurasia Institute of Earth Sciences

Conclusions

Our experiment reveals that the regional water budget will be adversely affected by the water loss through the increased evapotranspiration.

- The increasing water demand of the irrigated region (GAP) is currently barely compensated by the headwaters of the Euphrates & Tigris basin.
- Temperature decrease caused by increased evapotranspiration will be at the same order of the increase in temperature due to RCP forcing. Hence, the temperature of the irrigated region will not be changed significantly in the future.

The water of the region is primarily partitioned between energy production, irrigation and release for the downstream countries, the dramatic increase in water loss through evapotranspiration has potential to alter the water management practices and policy measures in the larger region.

Future work

Precipitation recyclingIrrigation techniques (flood, sprinkler, drip)

Thank you* yelizyilmaz@itu.edu.tr

* This study was supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey). Research Grant Number : 114Y114

* My NCAR visit is currently supported by the TÜBİTAK Doctoral Research Fellowship Programme.

Performance Evaluation

Future-Reference (Turkey)

LULC change + RCPs effect

