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Most physical processes
represented, but ....

Errors in timing and
amplitude of diurnal cycle

Different amounts of
widespread rain
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Simulated and Observed Diurnal Precipitation

Cycle: Sumatra
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The type of rain affects latent heating
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The type of rain affects the

local hydrological outcome

Folwers Gap run 6 ("late peak’) rainfall and runoff rates
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Separation of diabatic heating by rainfall type
Based on Shige et al. (2004) / Lang et al. (2003)

Is the rain-rate more than
double the background
value, or more than 20 mm
hrt?

yes

Is it raining? yes

Is there rain water
mixing ratio >0
anywhere in the
column?

yes

Is there cloud water
mixing ratio >0
between 500 and
2000 m?

yes

Is the grid point
isolated or
adjacent to deep
convection?

Is there cloud water
mixing ratio > 0.5 g kg
orupdraft>3mst?

below the freezing level?
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Separation of diabatic heating by rainfall type
Based on Shige et al. (2004) / Lang et al. (2003)
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CONVECTIVE
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Average latent heating from dx =4 km
simulations over Sumatra

10 Years of Austral summer simulations
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Resolution dependence of convective-stratiform evolution

MYJ PBL Scheme

dx =12 km, 4km, 1.33 km, 444 m WSM6 MP Scheme

BM Cu scheme (12km only)

Inner three domains are convective-permitting MEALDERIED
RRTM / Goddard radiation

2 days simulation (so far) during MJO active period in November 2017
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Average diurnal precipitation cycle over land and sea
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Convective and stratiform contributions to

average precipitation cycle
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Convective and stratiform contributions to

average precipitation cycle
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Convective and stratiform contributions to

average precipitation cycle
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Convective and stratiform contributions to

average precipitation cycle
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AFTERNOON: 1500 LST
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Unanswered questions:

1. What controls the convective / stratiform
partitioning, other than resolution?

2. Resolution dependence of the partitioning diagnosis?
How else could this have been done?

3. How to prevent early initiation of convection?



Conclusions

1. Diurnal peaks in precipitation due to both convective
and stratiform processes

2. Decreasing grid length -> increasing role of secondary
stratiform precipitation peak

3. Results consistent with observed model errors at
dx =4 km, but validation is ongoing

4. Improved representation of stratiform rain may be
critical for improving the diurnal precipitation cycle



