



### Climatology and extreme value analysis of a highresolution blended radar and rain-gauge sub-daily precipitation dataset for Switzerland

Olivia Martius<sup>1</sup> Yannick Barton<sup>1</sup> Luca Panziera<sup>2,1</sup>

<sup>1</sup> Oeschger Centre for Climate Change Research, Institute of Geography, Mobilar Lab for Natural Risks, University of Bern

<sup>2</sup> Federal Office of Meteorology, MeteoSwiss

# High impact events related to sub-daily precipitation extremes

Sub-daily extreme precipitation is relevant for

- surface water floods
- flash floods
- urban flooding

Often high intensity, very localized convective events

 $\rightarrow$  need for high-resolution (space / time) data

#### b UNIVERSITÄT BERN DESCHGER CENTRE CUMATE CHANGE RESEARCH



# Data set

# 1.CPC

Combination of radar and rain gauges (Co-kriging with external drift) real-time operational product 5 minutes temporal resolution 1 km<sup>2</sup> spatial resolution

Sideris et al. 2014

12 years: 2005 to 2017 (no 2011)

2.68 rain gauges





- > A data set that captures convective precipitation extremes?
- Some ideas for simple indices for convection-permitting model validation
- Compare rain gauge and CPC extreme precipitation point scale vs. volume integral scale
- > Can we provide return levels of rainfall for automatic alert systems?

## **Challenging small-scale thunderstorms**



OESCHGER CENTRE



<sup>4</sup> rain gauges

## **Challenging small-scale thunderstorms**



Radar







- $\rightarrow$  Coefficient of variation (STD/mean) in a 5 by 5 km box
- → Solution replace radar pixel above the rain gauge with a nearby pixel that best matches the rain gauge value







**Challenging small-scale thunderstorms** 







## **Geographical setting**



48.1 Germany Black France 47.2 AUSTIO Switzerland Weisstun Grisons P. Mortel 46.3 Orobie Predip Italy sta Valley Piemonte 50 km 0 e 45.4 8.2 5.9 7.1 9.4 10.5 Height ASL (m) 1000 1500 2000 2500 3000 200 500 750

## 12-year average seasonal maximum 1 hour rainfall

#### Summer JJA



b UNIVERSITÄT BERN DESCHGER CENTRE

<sup>4</sup> rain gauges

radar data not reliable

Panziera et al. 2018

# 12-year average seasonal maximum 1 hour rainfall

#### Summer JJA

mis





#### D UNIVERSITÄT BERN DESCHGER CENTRE

Panziera et al. 2018

rain gauges

radar data

not reliable

# 12-year average seasonal maximum daily rainfall



mis





rainfall [mm]



<sup>4</sup> rain gauges

Panziera et al. 2018

# **Diurnal cycle of extremes in summer (JJA)**



hour of the day with the most frequent occurrence of extremes



Alpine pumping valley  $\rightarrow$  mountain winds

Panziera et al. 2018

drainage flow mountain  $\rightarrow$  foreland winds

+ 2 hours for local time

# Verification CPC Cross Val. vs. rain gauges



50% - 65% of the rain gauge extremes are also extremes in CPC (POD)

40% - 50% of the CPC extremes are not extremes for the rain gauges (FAR)

The agreement between radar-derived and rain gauge rainfall:

- is lower in winter  $\rightarrow$  snowfall
- increases with reducing the threshold used to define extremes
- increases with increasing length of the accumulation period

#### Modeling of precipitation extremes for short time series



Automated Peaks over threshold: Generalized Pareto distribution (Fukutome et al. 2015)

Extended Generalized Pareto Distribution (Naveau et al. 2016)

#### Modeling of precipitation extremes for short time series



Automated Peaks over threshold: Generalized Pareto distribution (Fukutome et al. 2015)

Need to choose threshold and run parameter in an automatic way

Extended Generalized Pareto Distribution (Naveau et al. 2016)

Model the entire distribution

Temporal dependence not easy to remove

Assumes a positive shape parameter

#### Autumn 1-hour rainfall $\rightarrow$ shape parameter





#### 2-seasons return-level for 1-hour rainfall in autumn



GPD

#### extended GPD



# Summary

b UNIVERSITÄT BERN









Blended precipitation maps can be used to investigate (subdaily) extremes Careful treatment of convective situations is required Climatologies of subdaily extremes are valuable for convectionpermitting model validation and process studies Unexplored potential for extreme value analysis

#### Autumn 1-hour rainfall $\rightarrow$ shape parameter





#### extended GPD



# **Diurnal cycle of extremes**



#### summer JJA



#### autumn SON

hour of the day with the most frequent occurrence of extremes

Panziera et al. 2018

#### **1-hour rainfall GPD shape parameter**



#### JJA (summer)

#### DJF (winter)



# Verification CombiPrecip Cross Val. vs. rain gauges – Probability of Detection (POD) in summer





50% - 65% of the rain gauges extremes are extremes also in CPC

b u UNIVERSITÄT BERN DESCHGER CENTRE CLIMATE CHANGE RESEARCH





10.

10.1





10.

100



#### 1-hour rainfall, GP







#### Verification skill scores CPC Cross Val. vs. rain gauges

Contingency table

|           | G > th. | G < th. |
|-----------|---------|---------|
| CPC > th. | а       | b       |
| CPC < th. | С       | d       |

*th* = 99.5<sup>*th*</sup> *percentile* 

**Probability of detection** POD=a/(a+c)

**False alarm ratio** *FAR=b/a+b*  0.5 dB = 12 % 1 dB= 26% 2 dB = 59 %





#### Verification skill scores CPC Cross Val. Vs. rain gauges

Contingency table

|           | G > th. | G < th. |
|-----------|---------|---------|
| CPC > th. | а       | b       |
| CPC < th. | С       | d       |

**Bias of hits**  $th = 99.5^{th} percentile$ bias [dB]=10 log10(tot(CPC1a)/tot(G1a))

**Probability of detection** 

POD=a/(a+c)

### False alarm ratio

FAR=b/a+b



# High impact events related to sub-daily precipitation extremes

Sub-daily precipitation is relevant for



surface water floods

flash floods

urban flooding

UNIVERSITÄT

RERN

Often high intensity, very localized convective events  $\rightarrow$  need for high-resolution (space / time) data