

Improving estimates of riverine fresh water into the Mediterranean sea Fuxing WANG¹, Jan POLCHER¹, Thomas ARSOUZE¹

¹LMD/IPSL/CNRS, École Polytechnique, F 91128 Palaiseau, France

Outline

- Question and objective
- Methodology, study region, datasets
- Result (1): intercomparison of the estimated riverine fresh water (2): Trend analysis
- **Conclusions & future directions**

Canmore, 9 May 2018

Background and objective

> The Mediterranean sea: semi-closed, one of the most vulnerable regions to climate change > River discharge: couples the continents and oceans in the climate system; important source of fresh water; sustaining the marine productivity and overturning circulation

> Accurate estimates of riverine freshwater inputs into the Mediterranean sea is essentially important

Previous study				
	Hydrology	Land Surface Model		
Method	Observation (gauged); water balance (ungauged)	LSM forced by atmospheric conditions	LSM + O	
Advantage	Simple to implement	Daily scale	Compen errors/n tempora	
Disadvantage	Annual mean values	Uncertainties (missing processes)	Comput	

This study **Assimilation**

bservations (GRDC)

sate systematic nissing processes; High al/spatial resolution

ationally expensive

Assimilating river discharge observations in a model

Observations available

- **Conceptual variable** $\frac{aw}{dt} \approx 0$, P & E errors end up in **R**unoff + **D**rainage
- Bias in $Q \rightarrow$ correct model **R** & **D** (by x)
- Apply each x to its upstream basin, N of x depends on N of stations
- Improve **Q** simulation $\rightarrow Q_{corr}$ high temporal/spatial resolution; available when observations missing (climatology)

Wang, F., Polcher, J., et al., HESS., review, 2018.

Datasets and study region

- **ORCHIDEE forcing data:** WFDEI with precipitation corrected by GPCC, 0.5°
- **River discharge observations:** Global Runoff Data Centre (GRDC).
 - ✓ GRDC selection creteria: the difference of upstream area and distance between GRDC and ORCHIDEE model subbasin < 10% and < 25 km.
 - \checkmark UK and Nile river basin are excluded to accelerate the assimilation.
 - ✓ **338**/792 GRDC observation stations can be used (19.7°W-62.7°E, 25°N-62°N)
- **Previous freshwater datasets:** CEFREM, Low (Ludwig et al., 2009) and High Resolution

Uncertainty linked to the extrapolation methods for the correction factor

Extrapolation of the correction factor from gauged to un-gauged basins.

• Linear \approx Nearest \approx radial basis function (multiquadric)

Conclusion: the extrapolation accounts for at most 5% of the total discharge.

River discharge bias correction by assimilation

Forcing: WFDEI-GPCC

Estimated riverine input into the **Black sea** and the **Mediterranean sea**

Source	Water (km ³ /y)	Method	Period
Ludwig et al., 2009	396 (LR), 403 (HR)	GRDC + water balance	1960-1969 (LR), 1991-2000 (HR)
Kara et al., 2007	287	Model + obs.	1952-1984
Jaoshvili et al., 2002	294 to 474	Literature review	Various periods
Wang & Polcher, 2018	389 (ORCHIDEE); 367 (Assimilated)	1980 - 2013

Black sea: assimilated value \approx previous studies.

- Nile: same value for ORCHIDEE & CEFREM

Source	Water (km ³ /y)	Method	Period
Ludwig et al., 2009	387 (LR), 328 (HR)	GRDC + water balance	1960-1969 (LR), 1991-2000 (HR)
Peucker-Ehrenbrink, 2009	386	Land2Sea data	
Margat & Treyer	396		
Bouraoui et al. 2010	282-327	model	1980-2000
Mariotti et al., 2002; Struglia et al. 2004	256, <=328	GRDC, MED-HYCOS	>10 years
Boukthir & Barnier, 2000	347	UNESCO	various
Szczypta et al. 2012 (HESS)	312	GRDC	1991-2000
Wang & Polcher, 2018	575 (ORCHIDEE); 569 (Assimilated)	1980 - 2013

Mediterranean: Assimilated >> others (e.g., 170-230 km³/y higher than Ludwig et al., 2009). Why ???

Separating total discharge coastal points with and without observations

Possible sources of excess freshwater flows into the Mediterranean

The largest differences are in regions with complex coastlines: Agean, Balkan and Italy. Some explanations are:

- Small un-gauged rivers.
- Submarine groundwater discharge (SGD) and kastic systems

- Some extimates of SGD to the Mediterranean sea: • 52 km³/y by UNESCO (2004),
- 68 km³/y by Zektser et al. (2007),
- 300-4800 km³/y (fresh+saline), Rodellas et al. (2015) • Karst: Nearly 75% of total freshwater (UNESCO) SGD of Black sea: 16 km³/y Schubert et al. (2017) Why SGD is important?
- Strategic freshwater resources
- Important source of nutrients (eutrophication)
- Water cycle

Trend of riverine fresh water (1980-2008)

With the second of assimilated GRDC stations: • Decrease from 1980 to

- <50% (after 1990), <30% (after 2008)
- **Characterized** of fresh water into the Mediterranean and the

 - Period dependent;
 - Not significant 1980-2008.

Trend of assimilated fresh water over each sub-basin (1980-2008)

Trend of the diffrence between assimilated values (ASSIM) & LSM (1980-2008)

- \succ LSM: estimation of the freshwater flux where only climate changes.
- \geq ASSIM: a time varying correction includes different processes: (1) Climate dependent bias of LSM. (2) bias in atmospheric forcing. (3) Model missing processes (e.g., water usage).
- \succ Diff = ASSIM-LSM only retain the time evolution of climate independent trends.
- \succ Changes in 'Diff' \rightarrow changes in water usage and their impact on the freshwater flux to the ocean.
- > Significant decrease (1980-2008), associated to non climatic factors (-0.39 km³/y/y for Med, -0.75 km³/y/y for Black sea).

Trend of 'ASSIM – LSM' over each sub-basin (1980-2008)

Increasing trend over ALB basin

Decreasing trend over TYR, CEN, AEG, NLE, SLE basins

- Conclusions: freshwater estimated by assimilation (338 GRDC): 1980-2013, daily scale.
 - The Mediterranean: assimilated values (558 km³/y) > previous (300-400 km³/y; e.g., 328-387 km³/y by Ludwig et al., 2009)
 - -- Difference in non-observed regions
 - -- Submarine groundwater discharge (e.g., 300-4800 km³/y, Rodellas et al., 2015)
 - Trend (1980-2008): 'Assim-LSM' decreases (non climatic factors).

Future direction:

- Uncertainty (perturb correction factor \rightarrow ensemble fresh water).
- Larger domain (e.g., global)
- Impacts on ocean circulaiton.

Thank you !