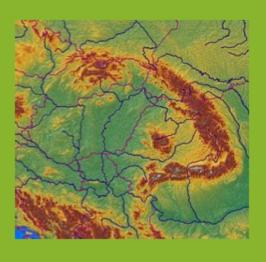
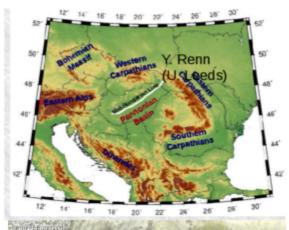
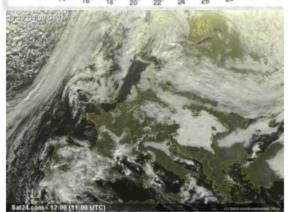
Computation of PET on daily scale to estimate the surface energy budget components in the region of the PannEx RHP


¹LAKATOS, M., ²WEIDINGER, T., ¹HORVÁTH, Á., ¹HOFFMANN, L., ¹BIHARI, Z., ¹SZENTIMREY, T., ³CUXART-, J.

¹HUNGARIAN METEOROLOGICAL SERVICE, ²DEPARTMENT OF METEOROLOGY, EÖTVÖS LORÁND UNIVERSITY, ³UNIVERSITY OF THE BALEARIC ISLANDS

Outline


- PannEx: Pannonian Basin Experiment Initiating RHP status
- FQs and Cross Cuts within PannEx
- CarpatClim Gridded dataset: freely avalable gridded in-situ surface observations for the region
- Daily PET estimation for the CarpatClim grid
- Case study: Modelling evapotranspiration (WRF) and comparison with PET values for a five day long period


Pannonian (Carpathian) basin

PannEx: Pannonian Basin Experiment - Initiating RHP status

- •A closed basin with only one main outflow, the Iron Gates
- •A large low central plain (100 m asl) surrounded by mountains with elevations nearing 2000 m asl
- A very good test area for many geophysical processes (natural or human-induced)
- •The Pannonian basin is a transition area between mediterranean, atlantic and continental climates
- The area is fragmented between many different countries
- Research institutions and universities, performing networking activities
- Good potential for international funding.
- Between the HyMeX and Baltic Earth
- It is one of the selected Food Baskets by GEWEX

FQs and Cross Cuts within PannEx

CC1: Data and knowledge rescue and consolidation

CC2: Process modelling

FQ1 Adaptation of agronomic activities to weather and climate extremes

- Data collection and monitoring
- · Modeling of adaptive crop production technology
- · Socio-economic evaluation and prediction

FQ3 Toward a sustainable development

- Preserving ecological services
- Hydropower potential evolution
- · Wind and solar energy potential
- Building the infrastructure for forecasting and coordination of the energy production
- Evolution of the energy needs

FQ5 Education, knowledge transfer and outreach

- Education
- Knowledge transfer
- Outreach

FQ2 Understanding air quality under different weather and climate conditions

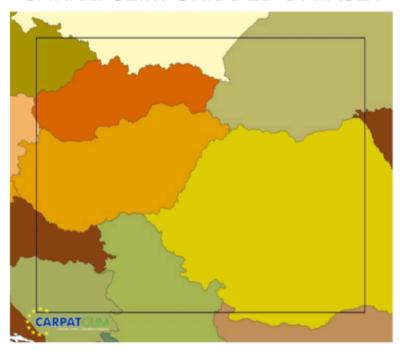
- · Urban-scale processes including measurements and models
- Scale-dependent meteorological and transport processes, air quality-planning
- Surface and boundary layer processes

FQ4 Water management, droughts and floods

- Harmonisation of the water balance estimations at Basin scale
- · Improving drought early warning system in the region
- Possibilities and perspectives in flash flood forecasting

CC3: Development and validation of modelling tools

An innovative idea: the Task Teams


They are intended to be the basic units of organization within PannEx, they are currently being setup

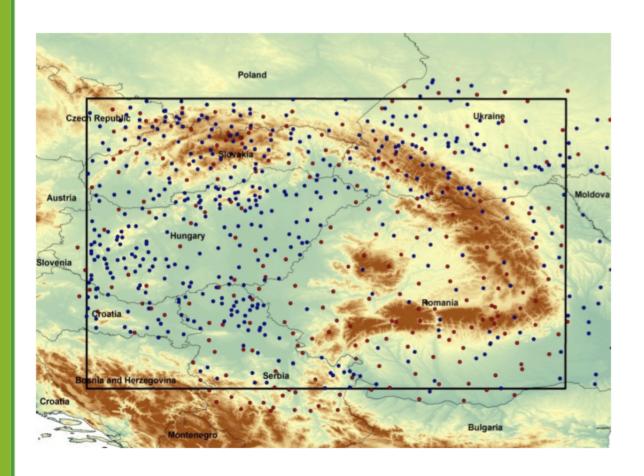
- 1. Agroclimatological and Biological Systems
- 2. Micrometeorology and Agronomical Process Modelling
- 3. Urban Studies
- 4. Energy Production
- 5. Ecological Services
- 6. Water Balance at the Basin Scale
- 7. Modelling from Climate to Flash Floods
- 8. Outreach and Education
- 9. Special Observations and Data Analysis

Estimation of PET using the available in-situ observations in the region of the PannEx RHP

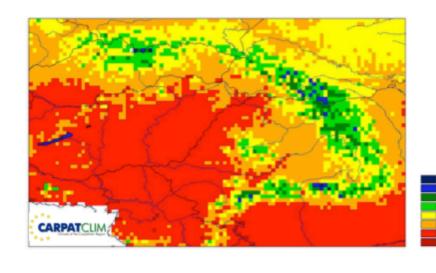
CarpatClim: the publically available insitu surface observations for the region

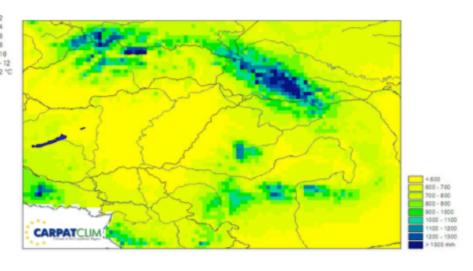
CARPATCLIM GRIDDED DATASET

DAILY, 10X10 KM RESOLUTION, PERIOD: 1961-2010


- CarpatClim project: 9 countries, leader Hungarian Meteorological Service
- Partly covers: Czech Republic, Slovakia, Poland, Ukraine, Hungary, Romaina, Serbia, Croatia
- •~500 000 sqkm
- •Commonly used methods for homogenization and interpolation: MASH-MISH (developed at OMSZ)
- •13 basic meteorological variables and
- •37 climate indicators were gridded
- publically available

http://www.carpatclim-eu.org


Data sources of CarpatClim


NMHSs in the region

415 climate stations and 904 precipitation stations were used

Annual mean T and prec, 1961-2010

Available parameters and indicators

No.	Indicator	Description	Units	Frequency
1.	TA_M	Average mean air temperature	°C	Monthly
2.	TA_Y	Average mean air temperature	°C	Yearly
3.	TMIN_M	N_M Average minimum air temperature	°C	Monthly
4.	TMIN_Y	Average minimum air temperature	°C	Yearly
5.	TMAX_M	Average maximum air temperature	°C	Monthly
6.	TMAX_Y	Average maximum air temperature	°C	Yearly
7.	PREC_M	Accumulated total precipitation	mm	Monthly
8.	PREC_Y	Accumulated total precipitation	mm	Yearly
9.	WS10_M	Average 10m horizontal wind speed	m/s	Monthly
10.	WS2_M	Average 2m horizontal wind speed	m/s	Monthly
11.	SUN_M	Sunshine duration	hours	Monthly
12.	SUN_Y	Sunshine duration	hours	Yearly
13.	CC_M	Average cloud cover	tenths	Monthly
14.	RG_M	Global radiation	J/cm²	Monthly
15.	RH_M	Average relative humidity	%	Monthly
16.	PV_M	Mean vapour pressure	hPa	Monthly
17.	PA_M	Mean surface air pressure	hPa	Monthly
18.	SNOW_M	Snow depth	cm	Monthly
19.	SWE_M	Snow water equvivalent	mm	Monthly
20.	FD_M	Number of frost days (Tmin < 0°C)	days	Monthly
21.	PFD_M	Percentage of frost days (Tmin < 0°C)	96	Monthly
22.	FD Y	Number of frost days (Tmin < 0°C)	days	Yearly

23.	PFD_Y	Percentage of frost days (Tmin < 0°C)	%	Yearly
24.	SD_M	Number of summer days (Tmax > 25°C)	days	Monthly
25.	PSD_M	Percentage of summer days (Tmax > 25°C)	%	Monthly
26.	SD_Y	Number of summer days (Tmax > 25°C)	days	Yearly
27.	PSD_Y	Percentage of summer days (Tmax > 25°C)	96	Yearly
28.	HD_M	Number of hot days (Tmax > 30°C)	days	Monthly
29.	PHD_M	Percentage of hot days (Tmax > 30°C)	%	Monthly
30.	HD_Y	Number of hot days (Tmax > 30°C)	days	Yearly
31.	PHD_Y	Percentage of hot days (Tmax > 30°C)	%	Yearly
32.	PAI	Palfai Drought Index		Yearly
33.	SPI-3	Standardized Precipitation Index - 3-months	-	Monthly
34.	SPI-6	Standardized Precipitation Index = 6-months	-	Monthly
35.	SPI-12	Standardized Precipitation Index - 12-months	-	Monthly
36.	SPEI-3	Stand. Prec. Evapotranspiration Index = 3-months	-	Monthly
37.	SPEI-6	Stand. Prec. Evapotranspiration Index - 6-months		Monthly
38.	SPEI-12	Stand. Prec. Evapotranspiration Index = 12-months	-	Monthly
39.	RDI-3	Reconnaissance Drought Index (3-months)		Monthly
40.	RDI-6	Reconnaissance Drought Index (6-months)	-	Monthly
41.	RDI-12	Reconnaissance Drought Index (12-months)		Monthly
42.	PDSI	Palmer Drought Severity Index	-	Monthly
43.	ID_M	Number of ice days (Tmax < 0°C)	days	Monthly
44.	PID_M	Percentage of ice days (Tmax < 0°C)	%	Monthly
45.	ID_Y	Number of ice days (Tmax < 0°C)	days	Yearly
46.	PID_Y	Percentage of ice days (Tmax < 0°C)	%	Yearly
47.	EHD_M	Number of extremely hot days (Tmax ≥ 35°C)	days	Monthly
48.	PEHD_M	Percentage of extremely hot days (Tmax ≥ 35°C)	%	Monthly
49.	EHD_Y	Number of extremely hot days (Tmax ≥ 35°C)	days	Yearly
50.	PEHD_Y	Percentage of extremely hot days (Tmax ≥ 35°C)	%	Yearly

51.	ECD_M	Number of severe cold days (Tmin < -10°C)	days	Monthly
52.	PECD_M	Percentage of severe cold days (Tmin < -10°C)	96	Monthly
53.	ECD_Y	Number of severe cold days (Tmin < -10°C)	days	Yearly
54.	PECD_Y	Percentage of severe cold days (Tmin < -10°C)	96	Yearly
55.	GSL_Y	Growing season length	days	Yearly
56.	WD_M	Number of wet days (RR ≥ 1 mm/day)	days	Monthly
57.	PWD_M	Percentage of wet days (RR ≥ 1 mm/day)	96	Monthly
58.	WD_Y	Number of wet days (RR ≥ 1 mm/day)	days	Yearly
59.	PWD_Y	Percentage of wet days (RR ≥ 1 mm/day)	96	Yearly
60.	EWD_M	Number of wet days with (RR > 20 mm/day)	days	Monthly
61.	PEWD_M	Percentage of wet days with (RR > 20 mm/day)	96	Monthly
62.	EWD_Y	Number of wet days with (RR > 20 mm/day)	days	Yearly
63.	PEWD_Y	Percentage of wet days with (RR > 20 mm/day)	96	Yearly
64.	M1DTOT_M	Maximum 1-day total rainfall	mm	Monthly
65.	M1DTOT_Y	Maximum 1-day total rainfall	mm	Yearly
66.	M5DTOT_M	Maximum 5-day total rainfall	mm	Monthly
67.	M5DTOT_Y	Maximum 5-day total rainfall	mm	Yearly
68.	ARI	Aridity index		Monthly

6	9.	MI	Moisture index	-	Monthly
7	0.	EI	Ellenberg index	C/mm	Yearly
7	1.	CDD6	Cooling degree days (summer)	°C	Yearly
7	2.	HDD6	Heating degree days (winter)	°C	Yearly
7	3.	GDD8	Growing degree days (extended summer)	°C	Yearly
7	4.	PET	Potential evapotranspiration	-	Monthly

in this work we prepared daily PET for the region by applying Penman-Monteith method

Monthly PET in CarpatClim

CARPATCLIM Date Report 21-06-2013 Version Final Page **16**

3.36 Potential evapotranspiration

Inputs: Mean temperature (T_M, in °C, for all 12 months), Latitude (φ in radians)

$$\text{PET [mm]} \qquad \text{PET*} = \begin{cases} 0 & T_{\text{M}} < 0^{\circ}\text{C} \\ 16 \left(10 \frac{T_{\text{M}}}{I}\right)^{a} & 0^{\circ}\text{C} \leq T_{\text{M}} < 26.5^{\circ}\text{C} \\ -416.85 + 32.24 (T_{\text{M}}) - 0.43 (T_{\text{M}})^{2} & T_{\text{M}} \geq 26.5^{\circ}\text{C} \end{cases}$$

Exponential a coefficient $a = 6.75(10^{-7})I^3 - 7.71(10^{-5})I^2 + 0.49239$

Annual Heat Index [°C] $I = \sum_{j=1}^{12} i_j$

Monthly Heat Index [°C] $i_j = \left(\frac{T_{M_j}}{5}\right)^{1.514}$

Adjusted PET [mm] $PET = \left(\frac{\vartheta h}{360}\right) PET^* \quad \vartheta = \text{days (in that month)}$

Daylight [hours] $h = \frac{2\omega_{ss}}{15}$

Sunset hour angle [degrees] $\omega_{SS} = arccos(-tan(\phi)tan(\delta))$

Solar Declination [radians] $\delta = \left(\frac{\pi}{180}\right)(23.45)sin\left(\frac{2\pi(284+d_n)}{365}\right)$

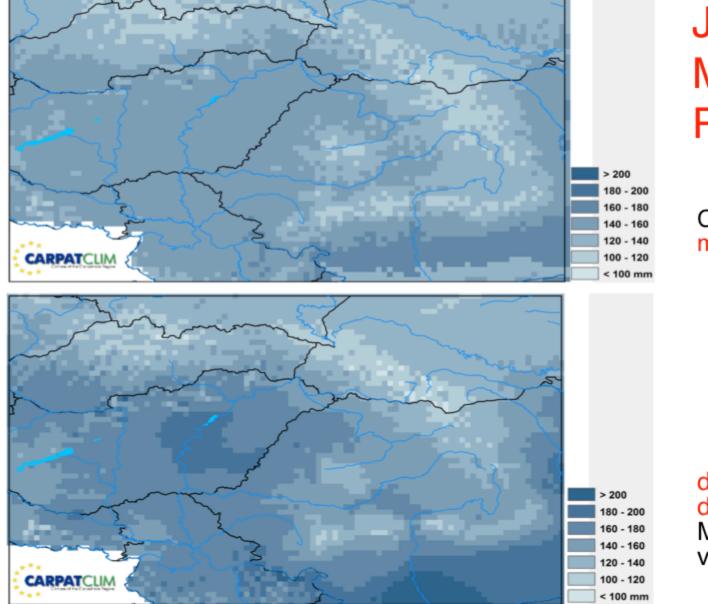
Julian day (15th) $d_n = 1(01 Jan), ..., 365(31 Dec)$ (Use the 15th of each month)

Outputs: monthly PET (Carpathians 1961-2010)

Daily PET: Penman-Monteith Reference Evapotranspiration method

17 steps for calculations from standard meteorological data (CarpatClim grid)

Day of the year, latitude, longitude, T_{min} , T_{max} ,


wind speed, relative humidity

$$ET_o = \frac{0.408 \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}$$

 ET_{o} = reference evapotranspiration, mm day^{-1} ; R_n = net radiation at the crop surface, MJ m⁻² d⁻¹; G = soil heat flux density, MJ m⁻² d⁻¹; T = mean daily air temperature at 2 m height, °C; u_2 = wind speed at 2 m height, m s⁻¹; $e_s - e_a$ = saturation vapor pressure deficit, kPa; Δ = slope of the vapor pressure curve, kPa °C-1; γ = psychrometric constant, kPa °C⁻¹.

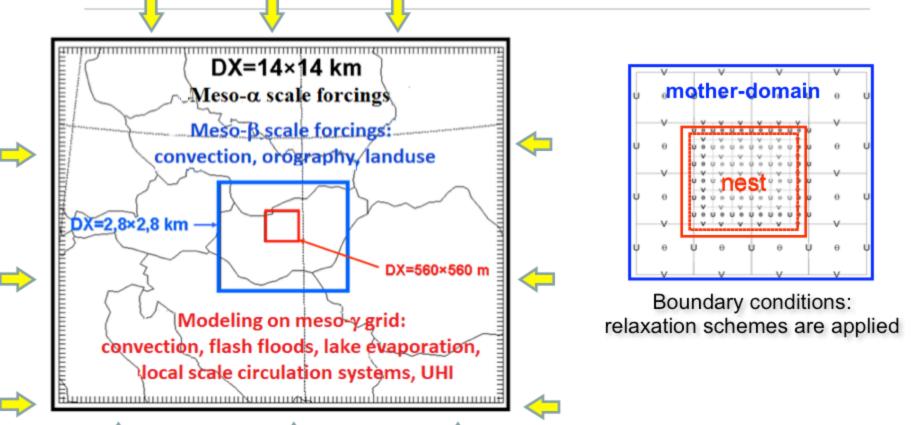
Reference:

Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., , and Morgan, K. T., 2010: Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method), IFAS Extension, University of Florida, http://edis.ifas.ufl.edu

July 2007 Monthly PET

CarpatClim monthly PET

derived from daily (Penman-Monteith) PET values


Modelling evapotranspiration and comparison with PET values

CASE STUDY FOR 18.07.2007-22.07.2007 VERY HOT PERIOD IN THE CARPATHIAN (PANNONIAN BASIN)

EVAPOTRANSPIRATION – WRF model implementation

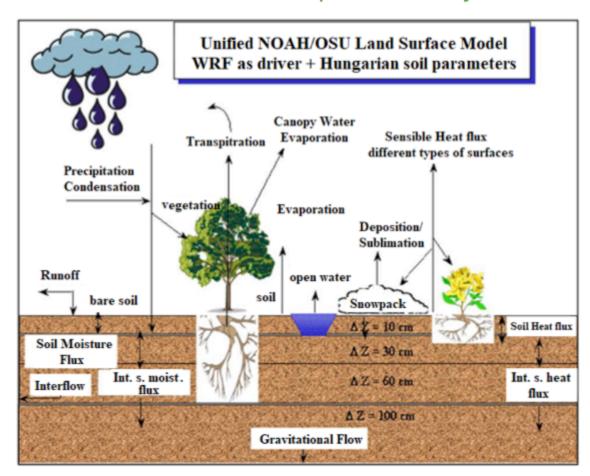
Initial and boundary conditions

48 hours forecasts, ECMWF model results in every 3 hours with 0.25° x 0.25° space resolution

References:

Horváth, Á., Nagy, A., Simon, A., Németh, P., 2015: MEANDER: The objective now casting system of the Hungarian Meteorological Service. IDŐJÁRÁS Quarterly Journal of the Hungarian Meteorological Service, 119(2), 197-213.

The Weather Research and Forecasting (WRF) Model, https://www.mmm.ucar.edu/weather-research-and-forecasting-model

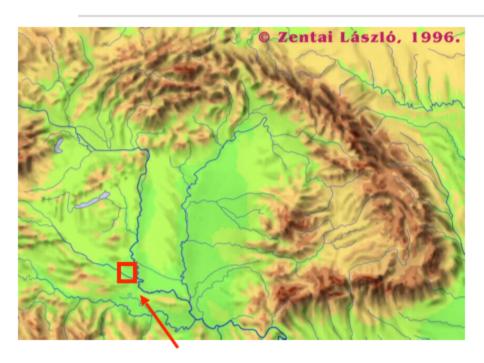

WRF-NOAH coupled model system

Effect of soil moisture is critical on the model output

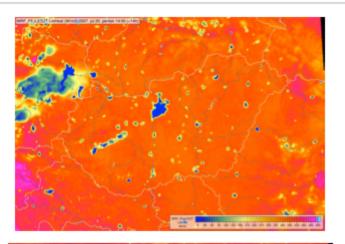
Next slide - sensitivity study

Important to estimate the component of the surface energy budget components in the region PannEx region

Surface evaporation and energy budget components from WRF-NOAH coupled model system

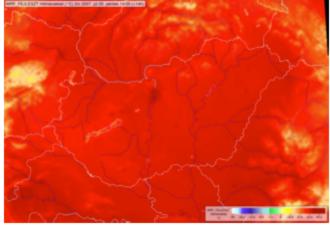


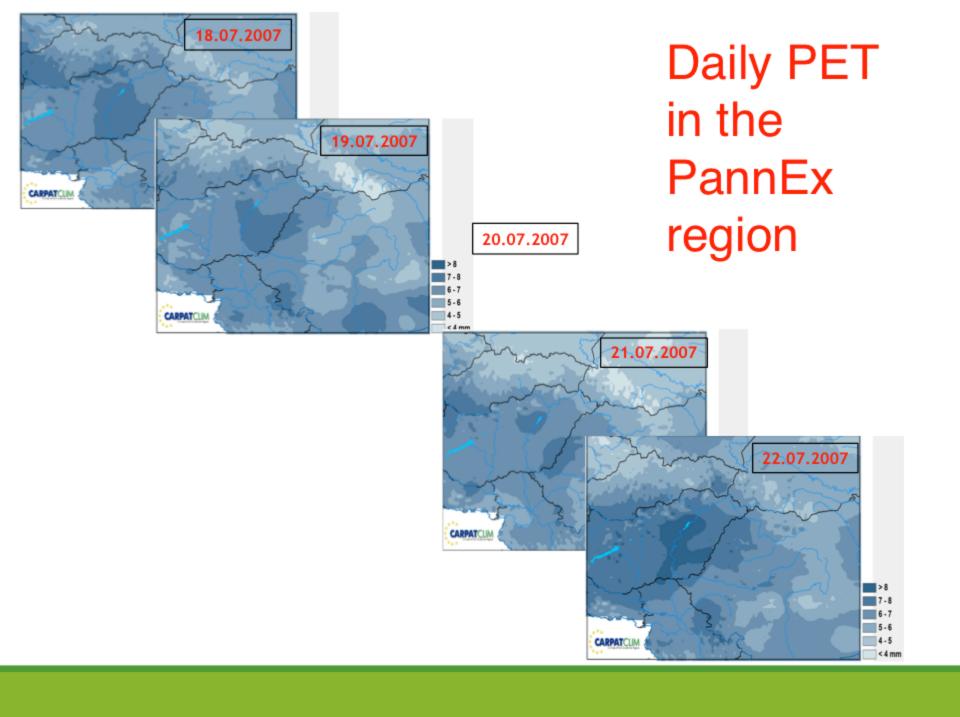
References:


Acs, F., Gyöngyösi, A. Z., Breuer, H., Horváth, A., Mona, T., Rajkai, K.., 2014 Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes. Meteorologische Zeitschrift, Vol. 23, No. 3, 279-293

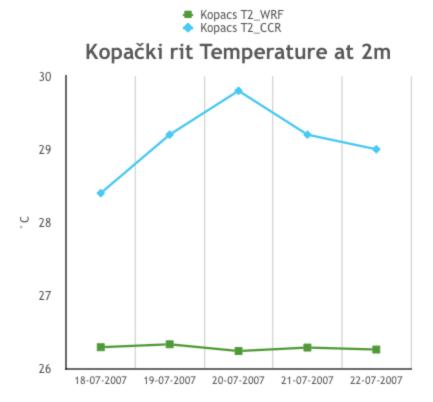
WRF Noah Noah-MP Modeling System https://ral.ucar.edu/solutions/products/wrf-noah-noah-mp-modeling-system

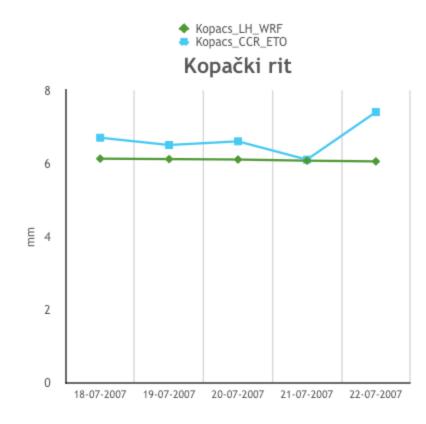
Case study/WRF run for 18.07.2007-22.07.2007 very hot period


Nature Park Kopački rit, 177 km² in Eastern Croatia, moorland



LE


20 July 14 UTC


T(2m)

Comparison of the regional average of the modelled (WRF) and measured (CCR: CarpatClim) values for the Kopački rit

Conclusion and future plans

- The CarpatClim dataset is an appropriate dataset for studying the radiation and energy budget components in daily scale in the PannEx region
- In this study the CarpatClim is extended with daily PET values for other applications
- Analysis of climatology of surface energy budget components based on the WRF-NOAH coupled model system
- Further extension of the CarpatClim dataset with land-use, albedo and soil moisture data to support the PannEx activities
- Estimation of daily PET with using actual land-cover CarpatClim database