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MOTIVATION AND CHALLENGE Figure 1. Changes in the 10-year mean low-cloud fraction (ACLDLOW) PROGRESS AND NEXT STEPS
caused by a factor-of-6 time-step reduction in EAMv1 before and after

Strong time-step sensitivities in the simulate long-term revising the numerical schemes of process coupling. Using the methods and tools described

climate suggest that EAM's time integration and process EAMv1 default With revised process coupling below, we have substantially reduced

coupling algorithms have large errors. These errors must
be substantially reduced to avoid numerical artifacts
overwhelming physical responses in EAM’s simulations.
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AN low clouds in EAMv1 (Figure 1).
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Due to complex and nonlinear interactions among 0.08 clouds. We also started to quantify and
atmospheric processes, it is often challenging to pinpoint . I“’-12 reduce resolution sensitivities in the
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ERROR QUANTIFICATION AND ATTRIBUTION RELATIONSHIP IDEALIZED MODELS

CHARACTERIZATION | | |
Inspired by EAM simulations and budget

EAM uses sub-stepping for many processes or groups of processes. The code and data _ . _
analysis results, we developed idealized

- structures are flexible and hence can support different ordering and coupling methods. Strongly interacting processes often _ _
- - - A PIRTPS . models (toy models) to help investigate the
These code features are exploited to identify the sources of time-step sensitivities in cause large numerical errors. Budget | |
different cloud regimes (Wan et al, 2021, GMD; see also Santos et al., 2021, JAMES). analysis can help identify such interplay between numerical errors and
. model physics.
_ | processes and subsequently guide the
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step reduction in EAMv1 (panel a). The We developed a new online diagnostics drift of the mean state when nonlinear
contributions from different processes or tool in EAM (Figure 3) that makes positive feedback is present in the
coupling frequencies (panels b-e). conditional sampling and budget analysis equation system. This explains the time-
QOE 13E 180 13W 9OW 4SW 0 45 runtime configurable. This avoids tedious step sensitivities shown in Figure 2b.
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o | that are often required by process-level Figure 4. Toy model simulations showing the
30N L analysis (Wan et al, 2022, GMD). sensitivity of stratiform cloud liquid

concentration to the frequency of coupling
between the cloud physics parameterizations
Figure 3. A new online diagnostics tool in EAM. and other atmospheric processes (e.gq.,
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(a) Assuming cloud-top radiative cooling has no
impact on boundary layer turbulence
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THEORETICAL ERROR ANALYSIS
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Applied mathematicians on our team developed a theoretical error analysis technique (>fmpfm> Vv e v_ u QA'%‘;‘%‘»‘%‘V‘;W%"ﬁ%}hﬁ%“%}h
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processes. For example, for a generic two-process problem dy/dt = A + B, the local f Checkport 31 00
truncation errors resulting from sequential and parallel splitting are (pr {Cpm} I l() e
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These expressions, combined with budget analysis results from EAM, can be used to e
estimate the coupling error of different coupling schemes. The method has been used A
to help explain results shown in Figure 2. L e e B B
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