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Towards Better Numerical Coupling of Cloud Processes 
in the E3SM Atmosphere Model (EAM)

MOTIVATION AND CHALLENGE
Strong time-step sensitivities in the simulate long-term 
climate suggest that EAM’s time integration and process 
coupling algorithms have large errors. These errors must 
be substantially reduced to avoid numerical artifacts 
overwhelming physical responses in EAM’s simulations.

PROGRESS AND NEXT STEPS
Using the methods and tools described 
below, we have substantially reduced 
time-step sensitivities in the subtropical 
low clouds in EAMv1 (Figure 1).

The next foci are deep convection and high 
clouds. We also started to quantify and 
reduce resolution sensitivities in the 
simulated aerosol life cycles.

Due to complex and nonlinear interactions among 
atmospheric processes, it is often challenging to pinpoint 
error sources and distinguish between causes and effects.

Figure 1. Changes in the 10-year mean low-cloud fraction (∆CLDLOW) 
caused by a factor-of-6 time-step reduction in EAMv1 before and after 
revising the numerical schemes of process coupling.

EAMv1 default With revised process coupling

ERROR QUANTIFICATION AND ATTRIBUTION RELATIONSHIP 
CHARACTERIZATION

IDEALIZED MODELS

EAM uses sub-stepping for many processes or groups of processes. The code and data 
structures are flexible and hence can support different ordering and coupling methods. 
These code features are exploited to identify the sources of time-step sensitivities in 
different cloud regimes (Wan et al, 2021, GMD; see also Santos et al., 2021, JAMES).

Figure 2. Changes in the 10-year mean 
shortwave cloud radiative effect 
(∆SWCRE) caused by a factor-of-6 time-
step reduction in EAMv1 (panel a). The 
contributions from different processes or 
coupling frequencies (panels b-e).
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Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.
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(c) ∆t for stratiform clouds
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Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.
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(a) Proportional shortening of all major time steps
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Figure 17. Attribution of the 10-year mean CRE differences shown in the left column of Figure ??. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables ?? and ??. Flowcharts are shown in Figures ??, ??, and ??b.

28

(b) ∆t for coupling between stratiform clouds and rest of EAM

(c) Method of coupling between radiation and deep Cu
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Figure 14. 10-year mean CRE differences between v1_CPL+DeepCu_Shorter and v1_CPL+DeepCu+Tau_Shorter reveal the impact of a

reduced ratio of �tdeepCu/⌧ without model step size changes. White indicates statistically insignificant differences. The simulation setups

are summarized in Tables 1 and A1. The two simulations correspond to the same flowchart shown in Figure A2b.
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(e) ∆t/𝜏 in deep convection 
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Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.
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Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.
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THEORETICAL ERROR ANALYSIS
Applied mathematicians on our team developed a theoretical error analysis technique 
to distinguish process coupling error from time integration errors of individual 
processes. For example, for a generic two-process problem  dy/dt = A + B,  the local 
truncation errors resulting from sequential and parallel splitting are

Strongly interacting processes often 
cause large numerical errors. Budget 
analysis can help identify such 
processes and subsequently guide the 
design of accurate coupling schemes. 

We developed a new online diagnostics 
tool in EAM (Figure 3) that makes 
conditional sampling and budget analysis 
runtime configurable. This avoids tedious 
coding and large amount of model output 
that are often required by process-level 
analysis (Wan et al, 2022, GMD).
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Figure 2. A schematic showing a time step of model simulation involving five hypothetical code compartments, A to E, either resolved or
unresolved by the model’s computational mesh, that are numerically coupled using isolated sequential splitting (see Sect. 2.2). Also shown
are various tags of locations (referred to as checkpoints, see Sect. 3.1) within a time step that are introduced to facilitate diagnostics using
the new tool. When the tool is used in a simulation, some checkpoints are activated (i.e., selected by the user and indicated in green here),
and others are inactive and indicated in gray. No information is monitored at inactive checkpoints. The green lines with a circle on one end
and an arrowhead on the other end depict how increments of model variables are defined. Further details can be found in Sects. 2.2 and 3.1.

to compartment B1, subcycle 2 corresponds to compartment
B2, etc.).

2.3 History output

EAMv1 inherited from its predecessors a flexible mechanism
for handling model output (see, e.g., chap. 8 in Craig et al.,
2021). The data files that contain the temporal and spatial
distribution of model-simulated physical quantities are called
history files. The model can write multiple series of history
files with different write frequencies; these series are referred
to as history tapes in the source code. Different history tapes
can contain different output variables (fields). Whether the
values written out should be instantaneous, time-averaged,

maximum, or minimum during the output time window can
be specified for each tape on a field-by-field basis.

The software infrastructure for history output uses internal
data types and functions that handle the storage of fields to
be written out and perform the calculation of required statis-
tics (e.g., time averages). Typically, researchers focusing on
physical or computational aspects of the model do not need
to care about the internal workings of this software infras-
tructure. Rather, they use a subroutine named outfld to
transfer the values of a model variable to the infrastructure.
To provide a context for some descriptions in later sections,
we note that while a model variable can change its value
multiple times in a time step of 1tCPLmain, the value being
recorded for output is the snapshot made when the outfld
subroutine is called. The location in the time integration cy-
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Figure 3. A new online diagnostics tool in EAM.

Inspired by EAM simulations and budget 
analysis results, we developed idealized 
models (toy models) to help investigate the 
interplay between numerical errors and 
model physics. 

Figure 4. Toy model simulations showing the 
sensitivity of stratiform cloud liquid 
concentration to the frequency of coupling 
between the cloud physics parameterizations 
and other atmospheric processes (e.g., 
dynamics, radiation). 

Figure 4 is an example in which a 
different coupling frequency leads to a 
drift of the mean state when nonlinear 
positive feedback is present in the 
equation system. This explains the time-
step sensitivities shown in Figure 2b.

These expressions, combined with budget analysis results from EAM, can be used to 
estimate the coupling error of different coupling schemes. The method has been used 
to help explain results shown in Figure 2.

Red: using the coupling frequency in EAMv1

(a) Assuming cloud-top radiative cooling has no 
impact on boundary layer turbulence 

(b) Assuming positive feedback between cloud-top 
radiative cooling and boundary layer turbulence 

Blue: 5x more frequent coupling

Red: using the coupling frequency in EAMv1
Blue: 5x more frequent coupling


