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Microphysical	processes	driving	cloud- and	water	vapour-related	distribution	and	variability	in	the	
troposphere	are	not	well	known:

Overview
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represent	an	important	source	of	uncertainty	in	climate	models⇒

⇒ tropical	ice	clouds	are	of	particular	interest	being	intimately	connected	to	water	vapour

• Satellites can describe both the micro-physical
properties (CALIPSO/CloudSat) and the moisture
structure (SAPHIR) in the whole troposphere but

• Reanalyses exhibit	noticeable	biases	in	the	tropical	water	and	energy	budget	on	the	vertical (e.g.	GEWEX)

clouds	are	heterogeneous	variables,	
humidity	is	a	continuous	field

different	instruments	with	different	spatial	
resolution	view	the	Earth	differently

⇒

⇒



Objective: Simulate at the scale of cloud measurements (`downscaling’) the water vapour
structure associated to tropical ice clouds from their microphysical properties
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Selection	of	ice	clouds

GEWEX2018	- Carella et	al.	(2018) 3/10

Statistical	clustering:	k-means Physical	clustering

CLOUDS



known as Gaussian Markov random field (GMRF, Rue and Held (2005)). Again, we implemented this augmented model by

defining two CALIPSO SR profiles as neighbours if they belong to the same SAPHIR pixel.

Another possibility, although more computationally expensive, is to explicitly include in our model the spatial correla-

tion structure of the predictors by a fusion of geostatistical and additive models, known as geoadditive models (Kammann

and Wand, 2003). These models allow to account not only for the non-linear effects of the predictors (under the assump-5

tion of additivity) but also for their spatial distribution: two SR profiles, and therefore the corresponding water vapour

structures, are more likely to be dependent if they are close, by some metric. The inclusion in the model of a spatial cor-

relation function C(s,s
j

), with s representing a set of geographical locations, can be implemented by adding to Eq. 2 the
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k /r) with the range r chosen equal to the size of SAPHIR pixels (10 km). Although increasing10

the algorithm complexity, including this term in the model does not change the mathematical structure of the minimization

problem (Eq. 4), which can then be solved using the same methodology used for GAMs (Wood, 2011).

Following Ferro (2008), Ferro et al. (2014), and Taillardat et al. (2016), to assess the prediction skills of these models,

scoring rules can be used to assign numerical scores to probabilistic forecasts and measure their predictive performance. Given15

an observation y, for a model ensemble forecast with members x1, ..,xK

a fair estimator (Ferro et al., 2014) of the continuous

ranked probability score (CRPS) is

CRPS(y) =
1

K

KX

i=1

| x
i

� y |� 1

2K (K � 1)

KX

i=1

KX

j=1

| x
i

�x
j

| (6)

where lower values of the CRPS indicate better predictive skills. For regression techniques that estimate the conditional

mean only (RF, GAM, GAM with GRMF, and the geoadditive method), the CRPS score accounts only for the accuracy of the20

forecast (the second term in Eq. 6 is zero) while for probabilistic methods, like the QRF method, it also accounts for the forecast

precision. Typically, in order to directly compare an ensemble prediction system to a reference forecast (e.g. a climatology),

the continuous ranked probability skill score (CRPSS) is needed

CRPSS = 1� CRPS
mod

CRPS
ref

(7)

The CRPSS will be positive if and only if the model forecast is better than the reference forecast for the CRPS scoring rule.25

3.2.2 Downscaling algorithm

Following the approach of Malone et al. (2012) and Liu and Pu (2008), the predictions derived with the different methods

were further optimized by ensuring that, for all layers, the observed relative humidity equals the average of the predicted RH

distributions within the corresponding encapsulating SAPHIR pixel. This approach is meant to preserve the so-called ‘mass
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Forecast	for	the	i-th
ensemble	member

Observed	value

Downscaling
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Predictive skills:

amongst the different ensemble members. However, when k is not know a priori, it must be selected from a range of plausible

values (here: k = 2-15), and is chosen so that adding another cluster does not produce a drastic decrease in wss, and therefore

does not improve significantly the quality of the clustering. For example for SR profiles in July 2013 over the Indian Ocean,

this criterion yields a number of clusters between 8 and 13 (not shown).

5

As Fig. 3 shows, both cluster 1 derived by k-means with k=8 and k=13 show a similar mean SR profile, with levels classified

as cloudy mostly in the upper troposphere. As a further check that these profiles correspond indeed to ice clouds, we compared

the k-means result with the clusters derived by combining the cloud phase flags associated with each vertical level as defined

in Chepfer et al. (2010) (e.g. a profile corresponding only to clear-sky and liquid observations is classified as LIQUID, see

caption in Fig. 3 for more details). As Fig. 3 shows, again a similar characteristic SR profile is observed for the flag-based10

profiles corresponding to ICE and ICE-MIX observations. Therefore, in the following, the k-means classification is used to

select all SAPHIR-CALIPSO co-located observations belonging to SR clusters characterized by this typical mean SR profile

(in Fig. 3, clusters outlined by a red square).

3.2 Downscaling of water vapour measurements from cloud profiles

Given the SAPHIR-CALIPSO co-located samples belonging to ice cloud-type clusters as derived in the previous section, the15

mean of SAPHIR relative humidity at the l-th pressure level (RH
l

, Brogniez et al. (2016)) can be estimated in terms of an

unknown function � of the SR profile

RH
l

s �(SR1,SR2, ...,SRp

) (1)

where SR1,SR2, ...,SRp

designate SR at each altitude level (p = 21, following the vertical averaging implemented as

described in section 3.1) and here represent the covariate data sources, also known as predictors. The method to downscale20

SAPHIR observations of relative humidity from CALIPSO SR profiles consists in a two-stage regression model implemented

directly on the data at their observed spatial resolution (Liu and Pu, 2008; Malone et al., 2012). First, RH
l

is estimated based on

the chosen statistical regression model (section 3.2.1). Secondly, the same regression model is applied iteratively to the model

estimates dRH
l

and at each iteration step the results are corrected to harmonize the average of the estimates at fine resolution

with its value at coarser scale (section 3.2.2).25

This scheme differs from the classical downscaling approach, where local variables, generally point-scale observations,

are generated from large-scale variables, available at the much coarser grid-scale resolution typical of climate models and

reanalyses outputs, based on a model trained on the available local variables. However, this method cannot be applied in the

case under study, since there are no RH observations at the resolution of cloud measurements available. On the other hand, by30

including in the regression model in Eq. 1 covariates at a finer resolution we can effectively incorporate their spatial variability

6
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An	iterative	algorithm	is	then	used	to	optimize	the	regression	ensuring	the	‘mass	balance’	(Malone	et	al.,	2012)

(Ferro,	2008)
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Observed	RH	(SAPHIR)

Downscaled	RH	(QRF,	median)
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Downscaled	RH	(QRF,	IQR)
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High	 resolution	spatial	inhomogeneities in	the	water	vapour	 field	cannot	be	observed	by	SAPHIR
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2. Statistical	framework	to	re-scale	observables	from	different	instruments

Future	work	and		perspectives

1. Climate-related	studies

• how	small	scale	water	cycle	processes	behave	when	exposed	to	strong	variations	in	large	scale	
circulation	regimes	such	as	those	associated	to	El	Niño	cycles

• ‘evaluate’	how	small	scale	water	vapour inhomogeneities affect	 the	water	vapour in	reanalyses

• put	the	results	of	past	and	current	field	experiments	into	a	larger	scale	context

• guide	the	parametrizationof	unresolved	subgrid-scale	water	vapour/clouds	processes	n	climate	models	

• evaluate	the	description	of	water	vapour/cloud	interactions	in	regional	models

• test	the	validity	of	the	fixed	anvil	temperature	and	estimate	the	changes	to	long-wave	fluxes	with	
warming,	for	example	using	simulated	CALIPSO	profiles	from	model	variables

• quantify	the	limits	of	current	and	future	space	missions	by	characterizing	the	spatial	inhomogeneities
in	water	vapour	fields	 that	cannot	be	observed	by	present	satellites	

A 10-year long high resolutionwater vapour-clouds dataset (2006-2017)⇒

Extended the method to other types of clouds (additional covariates might be required: e.g. for
liquid clouds, include the radar reflectivity asmeasured by CloudSat)

⇒
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The water vapour response for ice cloud profiles in the tropics is well predicted from their
micro-physical properties, using instantaneous satellite measurements

⇒

Process	studies	require	water-vapour observations	at	smaller	scale	than	SAPHIR	pixels	(<10	km)⇒

QUESTIONS!

ANSWERS?

giulia.carella@lsce.ipsl.fr

By	providing	a	method	to	generate	pseudo-observations	of	relative	humidity	(at	high	spatial	
resolution)	from	simultaneous	co-located	cloud	profiles,	this	work	will	be	of	great	help	to	revisit	
some	of	the	current	key	barriers	in	atmospheric	science	

⇒


