Statistical downscaling of water vapour satellite measurements from observations of tropical ice clouds

Giulia Carella *, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer

*giulia.carella@lsce.ipsl.fr

Image from T. Peake

Overview

Microphysical processes driving cloud- and water vapour-related distribution and variability in the troposphere are not well known:

- \Rightarrow represent an important source of uncertainty in climate models
- ⇒ **tropical ice clouds** are of particular interest being intimately connected to water vapour
- Reanalyses exhibit noticeable biases in the tropical water and energy budget on the vertical (e.g. GEWEX)
- Satellites can describe both the micro-physical properties (CALIPSO/CloudSat) and the moisture structure (SAPHIR) in the whole troposphere but
 - ⇒ clouds are heterogeneous variables, humidity is a continuous field
 - ⇒ different instruments with different spatial resolution view the Earth differently

Objective: Simulate at the scale of cloud measurements (`downscaling') the water vapour structure associated to tropical ice clouds from their microphysical properties

Selection of ice clouds

Mean SR profiles per cluster (July 2013, Indian Ocean)

GEWEX2018 - Carella et al. (2018)

Downscaling

$RH_l \sim \Phi(SR_1, SR_2, \dots, SR_p)$

Model	Model type	Spatial Correlation	Prediction type
<u>GAM</u> (Wood, 2011)	Semi-parametric	-	Conditional mean
GAM with GMRF smoother (Wood, 2011)	Semi-parametric	Neighbour structure	Conditional mean
<u>Geoadditive</u> (Kammann & Wand, 2003)	Semi-parametric	Exponential correlation function	Conditional mean
<u>RF</u> (Breiman, 2001)	Non-parametric	-	Conditional mean
<u>QRF</u> (Meinshausen, 2006)	Non-parametric	-	Conditional quantiles

An iterative algorithm is then used to optimize the regression ensuring the 'mass balance' (Malone et al., 2012)

Predictive skills:

$$CRPS(y) = \frac{1}{K} \sum_{i=1}^{K} |x_i - y| - \frac{1}{2K(K-1)} \sum_{i=1}^{K} \sum_{j=1}^{K} |x_i - x_j|$$
 (Ferro, 2008)

$$CRPSS = 1 - \frac{CRPS_{mod}}{CRPS_{ref}}$$

Downscaling

$RH_l \sim \Phi(SR_1, SR_2, ..., SR_p)$

Model	Model type	Spatial Correlation	Prediction type
<u>GAM</u> (Wood, 2011)	Semi-parametric	-	Conditional mean
GAM with GMRF smoother (Wood, 2011)	Semi-parametric	Neighbour structure	Conditional mean
<u>Geoadditive</u> (Kammann & Wand, 2003)	Semi-parametric	Exponential correlation function	Conditional mean
<u>RF</u> (Breiman, 2001)	Non-parametric	-	Conditional mean
<u>QRF</u> (Meinshausen, 2006)	Non-parametric	-	Conditional quantiles
(Kammann & Wand, 2003) <u>RF</u> (Breiman, 2001) <u>QRF</u> (Meinshausen, 2006)	Non-parametric Non-parametric	- -	Conditional mean Conditional quant

An iterative algorithm is then used to optimize the regression ensuring the 'mass balance' (Malone et al., 2012)

Predictive skills:

$$CRPS(y) = \frac{1}{K} \sum_{i=1}^{K} |x_i - y| - \frac{1}{2K(K-1)} \sum_{i=1}^{K} \sum_{j=1}^{K} |x_i - x_j|$$
 (Ferro, 2008)

$$CRPSS = 1 - \frac{CRPS_{mod}}{CRPS_{ref}}$$

Predicted vs. observed RH (July 2013, Indian Ocean)

Predicted RH CRPSS (QRF)

Results

GEWEX2018 - Carella et al. (2018)

High resolution spatial inhomogeneities in the water vapour field cannot be observed by SAPHIR

Longitude

Future work and perspectives

- ⇒ Extended the method to other types of clouds (additional covariates might be required: e.g. for liquid clouds, include the radar reflectivity as measured by CloudSat)
- \implies A 10-year long high resolution water vapour-clouds dataset (2006-2017)

1. <u>Climate-related studies</u>

- how small scale water cycle processes behave when exposed to strong variations in large scale circulation regimes such as those associated to El Niño cycles
- 'evaluate' how small scale water vapour inhomogeneities affect the water vapour in reanalyses
- put the results of past and current field experiments into a larger scale context
- guide the parametrization of unresolved subgrid-scale water vapour/clouds processes n climate models
- evaluate the description of water vapour/cloud interactions in regional models
- test the validity of the fixed anvil temperature and estimate the changes to long-wave fluxes with warming, for example using simulated CALIPSO profiles from model variables
- quantify the limits of current and future space missions by characterizing the spatial inhomogeneities in water vapour fields that cannot be observed by present satellites

2. <u>Statistical framework to re-scale observables from different instruments</u>

Conclusions

- → The water vapour response for ice cloud profiles in the tropics is well predicted from their micro-physical properties, using instantaneous satellite measurements
- \Rightarrow Process studies require water-vapour observations at smaller scale than SAPHIR pixels (<10 km)
- ⇒ By providing a method to generate pseudo-observations of relative humidity (at high spatial resolution) from simultaneous co-located cloud profiles, this work will be of great help to revisit some of the current key barriers in atmospheric science

QUESTIONS!

giulia.carella@lsce.ipsl.fr

ANSWERS?