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Some LMDZ GCM present issues

LMDZ GCM :

— deep convection driven by boundary layer cloudy thermals and by cold pools
(wakes).

— No propagation nor transport of deep convection

Problems among others :

— it rains every day over tropical oceans.

— poor variability (e.g. MJO)

Unsatisfactory feature : The number density of cold pools is prescribed (10~

2

wakes per m? over ocean and 8 10712 over land).

Objectives :

— Get rid of prescribed wake density
— Variability of precipitation

— Represent aggregation

— Farther : represent propagation.
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1- The ALP-ALE system: coupling boundary layer thermals,
deep convection and density currents. (LMD & CNRM)

« Deep convection trigger given by the Available Lifting Energy (ALE) :
ALE > |CIN| ==> deep convection is triggered
« Closure given by the Available Lifting Power (ALP) :

M = ALP/(2 W, + |CIN]) ;
M = cloud base mass flux; W; = updraught velocity at LFC
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2- Cold pools: the “wake” scheme (LMD & CNRM)
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The density current (wake) parametrization

(Grandpeix and Lafore, JAS, 2010; Grandpeix et al., JAS

2010) Wake differential profiles

— Representation of a part of an infinite plane where 7
identical cold pools (radius r, height h) are scattered with
an homogeneous density D,y.

— State variables : (i) surface fraction covered by the wakes

0w = 3 (0w = 7r?Dyx), (ii) temperature and humidity

differences (resp. 60(p) and dq(p)) between wake and
off-wake regions. 8

— Spreading speed : C, such that C? ~ WAPE (WAke

Psurf dp
Potential Energy); WAPE = R40T,—
P

Ptop
— Evolutions of 40 and dq profiles are given by conservation

equations of mass, energy and water taking into account 8 q Sq)
vertical advection, turbulence and phase changes.

— Turbulence and phase change terms are assumed to be
given by the deep convection scheme.
— 0w profile is linear between the surface and the wake top

(no mass exchange through the wake boundary) ; it goes >
back to 0 linearly between the wake top and an arbitrary
altitude (about 4000 m).
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3- Stochastic physics:
Deep convection triggering
by boundary layer thermals

Stochastic trigger

— Analysis of LES (Large Eddy Simulation" of 10 July 2006

case over Niamey :

1. PDF of cumulus sizes is exponential.

— Trigger = "largest cumulus size exceeds a given
threshold"

— From PDF of Cu size — PDF of largest cumulus size

— From the thermal model — number of cumulus clouds
per unit area

— = number of cumulo-nimbus per unit area

— = probability of triggering; use of a random number
generator to implement this probability (no trigger =
ALE set to zero).

Deraity (Number of plumes per unit area)

2. deep convection triggers when there are large cumulus.

< =

(Rochetin et al, JAS, 2014, | and II)
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4 -Cumulonimbus & cold pool genesis

CuNimb genesis rate diagnosed from an LMDZ AMIP simulation.
Order of Magnitude : up to a hundred per million km2 and per hour over ocean;
half a dozen over Sahel in July.
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Moist radiative-convective equilibrium case

Moist RCE over land
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5 - The new scheme

Principle:

The cold pool (or wake) scheme describes a population of identical circular wakes. It is
supposed to represent a population of wakes of various sizes and ages, some fed by a
cumulonimbus (the “active” ones), others merely collapsing. These wakes may collide or
merge. The purpose of the scheme is to describe the evolution of such a diverse
population while representing a population of identical wakes.

Structure:

 Two categories of wakes: active (with cumulonimbus) and inactive (collapsing). D is
the number of wakes per unit area and A the number of active ones. The active wakes
become inactive when their attached Cb's decay. The inactive ones decay by
collapsing.

 The wake radius varies by three mechanisms: (i) spread (speed C*); (ii) genesis (new
cold pools are small, hence cold pool genesis induces a decrease of the mean wake
area); (iii) coalescence (when colliding wakes merge, yielding a larger wake, the
average size increases).







Model equations

A : number of active wakes per unit area

D : number of wakes per unit area

o : fractionnal area covered by wakes

r : wake radius

B : birth rate of Cumulonimbus (and of wakes)

ap : initial area of newborn wakes

C, : gust front velocity

Tep : lifetime of convective plumes

7 : lifetime of collapsing wakes

B : fraction of wakes that are active

« : factor going from zero (colliding wakes merely merge,
whithout wake area loss) to 1 (colliding wakes induce a
new one that grows while the two others collapse) :
should depend on shear. Presently, o = 1.

=N

collisions

( il
A = B — T—(A — BD)
b =, B — i — @
< T
wr?
0o = Bag — —(D—-A) + 2arDC.,
5 m
§ — a47er3tr(2a—y T

and from ¢ = 7r2D : 0,0 = 2nrDO:r + 7r20.D

Two ways of understanding the D term :

— It is a nudging of the active wake density A towards a
fraction S of the wakes.

— The activation or re-activation of wakes by wake-induced
Cb’s should appear as a source term proportional to D.

When cold pools are too weak, they cannot induce deep

convection at their gust front :

B = 0 when ALEy < CIN.

However, LES seem to indicate that even when ALE, >

CIN there are no Cb appearing at cold pool boundaries.

Need for a better parametrization of the ability of

cold pools to induce dynamicaly deep convection.
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Cindy-Dynamo

Temperature difference between wake and off-wake regions
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Conclusion

 Although all these results are very preliminary, the model
of cold pool population dynamics appears reasonable and
promising.

e It has a significant impact on the behaviour of deep
convection and cold pools.

* It will make it possible to abandon the prescribed values of
the wake density depending on the surface type.

e It is a first step towards the representation of the advection
of cold pools from one grid cell to the other.

e Obviously much work remains to be done before we
understand the behaviour of the wake density D.
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