Horizontal emissivity structure of UT cloud systems & resulting heating (A-Train synergy)

Claudia Stubenrauch

Laboratoire de Météorologie Dynamique / IPSL, France & S. Protopapadaki (COOPETIC)

GEWEX UTCC PROES workshop, Paris, France, 22-23 October 2018

Monsoon Clouds over Bangladesh (Archive: NASA, International Space Station)

Motivation & Approach

critical to climate feedback of UT clouds : cirrus radiative heating in upper troposphere

Cirrus anvils might regulate convection as they stabilize the atmospheric column by their heating (*Stephens et al. 2008, Lebsock et al. 2010*)

tropical convective regions: > 50% of total heating UT heating due to cirrus (Sohn 1999) -> widespread impact on large-scale atmospheric circulation (Schumacher et al. 2004)

Heating will be affected by:

• areal coverage • emissivity distribution • vertical structure (layering)

Climate warming : change in convective intensity & coverage, height of convective systems & emissivity structure of the anvils ? This then affects the heating gradients!

Goal: understand relation between convection & radiative heating induced by cirrus anvils

Method:

- 1) IR Sounders provide cloud height & emissivity; sensitive to cirrus
- 2) Cloud System Concept relates the anvil properties to processes shaping them
- 3) expand radar-lidar nadir track vertical structure laterally across UT cloud systems

link anvil structure to convective depth

Protopapadaki et al. ACP 2017

15 years AIRS; *tropical UT cloud systems* (p_{cld} - $p_{tropopause}$ < 250 hPa or p_{cld} < 440 hPa); *convective core (Cb):* ϵ_{cld} >0.98; *mature systems*: Cb fraction within system 0.1 – 0.3

convective co

link anvil structure to convective depth

Protopapadaki et al. ACP 2017

15 years AIRS; *tropical UT cloud systems* (p_{cld} - $p_{tropopause}$ < 250 hPa or p_{cld} < 440 hPa); *convective core (Cb):* ϵ_{cld} >0.98; *mature systems*: Cb fraction within system 0.1 – 0.3

Deeper convective cores -> stronger max rain rate -> T^{cb}_{min} good proxy for convective strength

Deeper convection leads to relatively more thin cirrus within larger anvils (similar land / ocean)

relation robust using different proxies : $T_{min}^{Cb} / LNB(max mass)$

increasing convective depth

How do tropical UT clouds change with global T_{surf}?

Stubenrauch et al. ACP 2017

Changes in occurrence of Cb & thin Ci relative to total cloud per °C warming show different geographical patterns -> change in heating gradients

& UT cloud systems ?

preliminary

av. coverage of all UT cloud systems: 25.6% $dcov/dT_s = -1.3 \pm 0.6 \%/^{\circ}C$ 79% of coverage from convective systems, 6% from thin ci systems48% of convective systems are cold convective systems ($T_c < 210K$) $d[cov_{cold conv}/cov_{conv}]/dT_s = +18 \pm 5 \% /^{\circ}C$ $dT_c/dT_s = -2.1 \pm 0.5 ^{\circ}C /^{\circ}C$ $d(thci/anv)/dT_s = 0.041 \pm 0.008 /^{\circ}C$

warming ->

larger area covered by cold convective systems & more thin ci within anvil

Contrast cold (La Nina) & warm (El Nino) tropics

Warmer El Nino period : larger area covered by cold convective systems & more thin ci within anvil

-> Graeme's talk tomorrow

link heating rates to convective depth

via a complete 3-D description of UT cloud systems & their environment (from ERA5)

- 1) along nadir tracks: categorize CloudSat FLXHR-lidar vertical structure & heating rates wrt cloud type ($p_{cld} \& \varepsilon_{cld}$), for different atmospheric situations
- 2) expand nadir track info across UT cloud systems & environment: develop optimized 'non-linear regression models': deep neural network learning techniques relate most suitable cloud & atmospheric properties from IR sounders & meteorological reanalyses to vertical structure & heating rates

1) heating rates sampled along track

AIRS UT clouds collocated to Lidar-CloudSat FLXHR heating rates wrt to ϵ_{cld} , p_{cld} ,

tropics, AIRS p_{cld} < 200 hPa, nadir track statistics

preliminary

warmer T_{surf} -> UT cloud net heating occuring in thicker layers

slightly larger thin cirrus heating

heating rates of UT cloud systems, sampled along track

AIRS UT cloud systems collocated to Lidar-CloudSat FLXHR heating rates wrt to ϵ_{cld} , p_{cld} ,

clear distinction of heating associated with each category
cold convective systems have a larger thin Ci heating

2) expand vertical structure across UT cloud systems via deep machine (ANN) learning

spectacular progress in automation of finding most appropriate weights used in the ANN layers (weights are modified to reduce difference between actual & desired outputs) *TensorFlow framework to train deep learning models using Keras python library*

AIRS –CloudSat-CALIPSO synergy along the track (2007-2010): X = cloud properties from AIRS & environmental properties from ERA (including horizontal organization) F(X) = vertical cloud extent or HR

train, validate & test non-linear regression models

-> test feasibility

2a) cloud vertical extent via deep learning

- **1)** Explore relevant variables : ε_{cld} , p_{cld} , ε_{cld} uncertainty, p_{cld} uncertainty, χ^2_{min} , spat. T_B var., 9 ε_{cld} (8-11µm), OLR, column H₂O, land fraction, p_{surf} , T_{surf} , $p_{tropopause}$, T profiles, H₂O profiles ε_{cld} p_{cld} PDFs + clear sky frequency over 2° x 2° (43 variables)
- 2) **Develop models**: for Cb, Ci, thin Ci, lower clouds random sampling for training (80%), validation (10%) & testing (10%), determine nb of iterations & check overfitting

Results improve if initial cloud info extended by atmospheric info and/or spatial cloud organization & separate models for cloud types

- Best results for thin cirrus & low clouds (as their extent is lower)
- Optically opaque clouds: bimodal \(\Delta z\) distribution; not yet well catched by prediction -> need to explore other variables (vertical velocity, etc...)

2a) cloud vertical extent via deep learning

- **1)** Explore relevant variables : ε_{cld} , p_{cld} , ε_{cld} uncertainty, p_{cld} uncertainty, χ^2_{min} , spat. T_B var., 9 ε_{cld} (8-11µm), OLR, column H₂O, land fraction, p_{surf} , T_{surf} , $p_{tropopause}$, T profiles, H₂O profiles ε_{cld} p_{cld} PDFs + clear sky frequency over 2° x 2° (43 variables)
- 2) **Develop models**: for Cb, Ci, thin Ci, lower clouds random sampling for training (80%), validation (10%) & testing (10%), determine nb of iterations & check overfitting

- Results improve if initial cloud info extended by atmospheric info and/or spatial cloud organization & separate models for cloud types
- Best results for thin cirrus & low clouds (as their extent is lower)
- ➢ Optically opaque clouds: bimodal ∆z distribution; not yet well catched by prediction -> need to explore other variables (vertical velocity, etc...)

2b) Cloud radiative LW heating rates via deep learning

reduce vertical resolution of NASA heating rates: 100 tropospheric layers -> 20 layers

results improve when initial cloud info extended by atmospheric info

no overfitting, mean absolute error ≤ 0.5 K/day !

 $\epsilon_{\rm cld}$ critical variable=> models per cloud type

developed models reproduce very well the LW heating rates

will also work out well for low clouds as their Dz can be well predicted

further improvements:

- include ERA 5 for atmospheric thermodynamic & dynamic variables
- revise for best suitable variables
- use new NASA products

Summary & Outlook

synergetic UT cloud system approach based on IR sounder data powerful tool
1) to study relation between convection & anvil properties:
emissivity structure of mature systems changes with convective depth:
more surrounding thin cirrus

warming might lead to more cold convective systems with relatively more thin cirrus this affects then the heating gradients

- 2) for process based metrics to evaluate GCM parameterizations linked to convection/detrainment/microphysics (fallspeed – De) -> Marine's talk tomorrow
- categorization of heating rates (A-Train synergy) wrt to ε_{cld}, p_{cld} shows clear distinction between cloud types; thin Ci heating larger for colder systems
- Expansion of LW heating rates across UT cloud systems via deep learning: first results show a very good reproducibility for separate models of Cb, Ci, thin Ci
- □ further exploration of atm. variables, continue with SW heating rates
- couple observed radiative heating rates with latent heating rates & force GCM to quantify climate system dynamical response to atmospheric heating
- **investigate mechanisms leading to emissivity structure in CRM RCE studies** (large domain)