

Institute of Atmospheric Sciences and Climate Roma

Monitoring severe convection using passive microwave radiometry

JF Rysman, C. Claud, P. Drobinski, S. Berthou, J. Delanoë, JP. Chaboureau, B.M. Funatsu

Why and how monitoring convection ?

- **Atmospheric convection** is a quasi global phenomenon which is often associated with severe weather
- Need for comprehensive and homogeneous **monitoring** of this phenomenon

- Can be achieved using **space borne instruments** (radar, infrared sensors, microwave radiometers)
- Microwave instruments are sensitive to **hydrometeors** and thus can be used to detect convection
 - → Passive and active microwave instruments (AMSU-B, MHS, Cloudsat)

An instrument to detect convection: the Microwave Humidity Sounder

- MHS is a space borne passive **microwave radiometer**
- 5 channels: 2 window channels and 3 high frequency channels around the water vapour absorption line
- Swath-width of **2000 km** and nadir resolution of **16 km**
- Viewing angle from 0.6° to 60°

1/ High frequency channels probe in **midatmosphere**

- 2/ **Frozen hydrometeors** scatter Earth radiation at microwave high-frequencies
- => It is possible to detect heavy ice loading in mid-atmosphere signature of **convection**
- Using these characteristics, *Hong et al. 2005, JGR* developed 2 criteria of severe convection: **deep convection** and **convective overshooting**

A long term database

least 3 satellites fly conjointly with MHS/ATMS/AMSU-B onboard

• Good temporal coverage with 3-4 hour resolution, crossing hours depend on the year/satellite

• It is possible to use these measurements to build a long-term and quasi global database of DC and COV

DC/COV only assessed for cases studies over **Amazonia** and **Florida** No information about the **microphysics** of DC and COV

Objective: evaluate and characterise DC/COV criteria from 60°S/60°N **Dataset:** 1/ Airborne radar collocated with MHS 2/ Spaceborne radar (Cloudsat) collocated with MHS

27 October 2012

Heavy rain in Albania/Greece (>200 mm/36h)

DC and COV detected by MHS

High reflectivity measured by Cloudsat

COV and DC criteria in the Mediterranean

Case study over Spain

- Colocation of MHS observations with an airborne X-band radar

The aircraft sampled a convective cloud with Deep Convection and Convective
Overshooting detected by MHS

- Within this cloud brightness temperatures reach low values (<180 K) because of ice scattering

- Maximum of reflectivity is found from 4 to 8 km in the COV region

Rysman et al. 2016, QJRMS

Rationale

- > 50 000 MHS / CPR-Cloudsat **collocations** from 2006 to 2015
- → Cloudsat Cloud Scenario Classification product to evaluate the DC & COV criteria
- → Tropopause height provided by the Goddard Earth Observing System
- **DC valid** when associated with **Deep Convective Clouds**
- **COV valid** when associated with **Deep Convective Clouds** AND when the Deep Convective Clouds reach the Tropopause

Results

- Both criteria are associated with **Deep Convective Clouds** (as observed by Cloudsat) > 90% of time
- COV effectively reaches the Tropopause 51% of time

Results

- Both criteria are associated with **Deep Convective Clouds** (as observed by Cloudsat) > 90% of time
- COV effectively reaches the Tropopause 51% of time

False positive as a function of month

• Problem in **frozen soil** regions (e.g., Siberia) and **mountain range**

Rysman et al., 2018 IEEE GRSL

Microphysics of Deep Convection and Convective Overshooting

- Effective radius quite similar for both diagnostics
- ER decreases rapidly with altitude

- Ice reaches lower altitude for DC
- Maximum of IWC is lower for COV

Data checking

Average number of DC occurrence

Toward a climatology of Deep Convection and Convective Overshooting

Data checking

 \rightarrow Some problems are not documented

Brightness temperature of windows channel 1 of AMSU-B

First climatology of Deep Convection and Convective Overshooting

- Range: 60°S/60°N
- Daily resolution
- 0.2°x 0.2° resolution

DC occurrence between 1999 and 2015

First climatology of Deep Convection and Convective Overshooting

- Range: 60°S/60°N
- Daily resolution
- 0.2°x 0.2° resolution

January-March 2015

June-August 2015

Number of DC occurrence

Conclusion

• We use spaceborne **passive microwave** instruments to detect convection

• We **validated** and **characterized** the **convective events** detected by microwave sounders

=> Passive microwave radiometers can be used to monitor convection from 60°S/60°N except in mountainous and frozen soil regions

• We are building a **quasi-global climatology** of **convective events**

• This climatology can be used for **model evaluation** (see Rysman et al. 2017 Clim Dyn)

Model evaluation using DC climatology

- Model: WRF decadal simulations
- Observations: AMSU-B/MHS and airborne radar

Simulated brightness temperatures (RTTOV radiative transfer model) show a bias when compared to observed BT

=> The model produces too few frozen hydrometeors and at too low altitude

Lead to an improved agreement between model and observations regarding convection

Rysman et al. 2017, Cl Dyn