Using a Cloud System Concept to assess bulk ice schemes (fall speed – eff. crystal size) in the LMDZ GCM

Claudia Stubenrauch, **Marine Bonazzola**, Sofia Protopapadaki, Ionela Musat

LMD/ IPSL, France

GEWEX UTCC PROES workshop, Paris, France, 22-23 October 2018

Motivation

Snapshot AIRS-CIRS UT clouds: dark -> light blue, according to decreasing ε_{cld}

In a GCM:

of the Earth

- ■mass-weighted ice crystal fall speed (v_m) strongly influences UT cloud occurrence & properties & has potential to influence climate sensitivity (e.g. Sanderson et al. 2008)
- D_e affects the radiative properties of UT clouds

Questions:

- How do existing parameterizations of v_m and De compare with each other?
- How do they compare with the current parameterizations of the LMDZ GCM?
- How can we use the new "cloud system diagnostics" to assess high clouds in LMDZ?
- What is the effect of including a new bulk ice scheme (v_m De) in the LMDZ GCM?

1. How do the existing parameterizations of v_m and De compare with each other?

Analytical expressions: D - > bulk properties

PSD generally expressed as:

 $N(D) = N_0 D^{\mu} e^{-\lambda D}$

V_m

D maximum dimension ice crystals, λ slope, μ dispersion; exponential PSD: μ =0

Cirrus bulk properties = mass- or area-weighted integrals of PSD, with $m = a D^b A = c D^d$

b=3 for sphere, b = 2 for aggregates, b = 1.5 for dendrites

IWC = $\int \mathbf{m}(\mathbf{D}) \mathbf{N}(\mathbf{D}) d\mathbf{D} = \int \mathbf{a} \mathbf{N}_0 \mathbf{D}^{b+\mu} e^{-\lambda \mathbf{D}} d\mathbf{D} = \mathbf{a} \mathbf{N}_0 \Gamma(\mathbf{b}+\mu+1)/\lambda^{(\mathbf{b}+\mu+1)}$

 $D_m = \int D^3 N(D) dD / \int D^2 N(D) dD = (b+\mu+0.67)/\lambda$ Mitchell et al. 1991

 $v_t \simeq (m/A)^{0.6} D^{0.3} f(p)$ $v_t = AD^B$

 $v_m = \int m(D) v_t(D) N(D) dD / \int m(D) N(D) dD$

$$= \mathbf{A'} \mathbf{D}_{\mathbf{m}}^{\mathbf{B'}}$$
 Heymsfield et al. 2013

A & B for 3 D ranges (Heymsfield et al. 2013)

A' & B' for 2 D ranges (Furtado et al. 2015) v_m and De in literature: different retrieval methods different meteorological conditions different Temperature and IWC ranges

Empirical parameterizations : $v_m = f(T, IWC)$

Heymsfield et al. 2007 (H07): 20000 PSDs from 2 field campaigns tropical anvils (T > -70°C) & synoptic cirrus (T>-54°C)

Deng & Mace 2008 (DM08): from longterm ARM in situ statistics, retrieved from radar measurements; 1999-2005 -> 30000 hrs convective: TWP ARM (T> -75°C) synoptic: SGP ARM (T>-65°C)

Mitchell et al. 2011 (M11): 3 field campaigns (TC4,NAMMA,ISDAC) young anvil cirrus, aged anvil cirrus, in situ cirrus, Arctic cirrus similar bevahour; except Arctic cirrus : v_m not dependent on IWC

Elsaesser et al. 2017 (E17): convective outflow from 4 field campaigns (TC4, NAMMA, MC3E, SPARTICUS) -> GISS GCM

Schmitt & Heymsfield 2009 (SH09): 2 field campaigns of TTL cirrus (-86°C to -56°C) $v_m = f(IWC)$

v_m increases when T increases when IWC increases

Parameterizations of moments/parameters of the PSD

Heymsfield et al. 2013 (H13): 10 recent field campaigns 83000 in-cloud PSDs (tropics to Arctic, -86°C – 0°C)

-> parameterizations of *a*, *b*, *c*, *d*, λ , μ as fct of T & *A*, *B* as fct of D

Field et al. 2007 (F07): 13000 PSDs, of 4 field campaigns (tropics & midlatitudes)

 $M_{n} = \int D^{n} N(D) dD = A(n) * e^{B(n)*T} * M_{2}^{C(n)}$ $M_{2} = IWC / a$ $D_{m} = M_{3} / M_{2} = a M_{3} / IWC$ $v_{m} = AD_{m}^{B}$

Furtado et al. 2015 (F15): v_m computed from PSD moment parameterization of F07 with: ice : A = 1042 / n = B = 1.0 (SI units) snow : A = 14.3 / n = B = 0.416for each D the smallest v_t of both: ice D < 600 µm & snow D > 600 µm

Synthesis : v_m - D_e

Analytical expression of D_e :

 $D_{e} = 3/2 \text{ IWC / } (\rho_{\iota ce} \int A(D) N(D) dD) = 3 \frac{\alpha}{\alpha} \Gamma(b+\mu+1) / (2 \rho_{\iota ce} c \Gamma(d+\mu+1))$

uncertainties: a: 54%, c: 11%, b & d: < 10% (e.g. Erfani & Mitchell 2016)

 $\rightarrow D_e - v_m$ relationships from field campaigns:

$v_m - D_e$ Strategies for LMDZ GCM

 $rac{}\sim v_m = f(IWC, T) \text{ of DM08 \& SH09}$ $D_{eff} = f(v_m) \text{ of H03 (mean between synoptic & anvil cirrus)}$

v_m = F07 PSD momentum & F15 A-B couples for ice / snow
 D_m = F07 PSD momentum
 D_{eff} = 0.17 x D_m (assumed aggregates, *Baran et al. 2016*)

Next step: use for radiative transfer instead of D_{eff} directly single scattering property (SSP) parameterization f(IWC,T) of Baran et al. 2016 (same PSDs as in F07)

2. How do these parameterizations of v_m and De compare with the LMDZ parameterizations?

In literature:

with scaling factor FALLICE= α =0.3, LMDZ v_m is very small compared to realistic v_m -> integrating new bulk ice schemes needs retuning of remaining unconstrained parameters (RQH, EPMAX) to achieve radiation balance

3. How can we use the new "cloud system diagnostics" to evaluate high clouds in LMDZ?

From cloud retrieval to cloud systems

clouds are extended objects, driven by dynamics -> organized systems

Method: 1) group adjacent grid boxes with high clouds of similar height (p_{cld})

Protopapadaki et al. ACP 2017

2) use ε_{cld} to distinguish convective core, thick cirrus, thin cirrus (only IR sounder)

30N-30S: UT cloud systems cover 25%, those without convective core 5% 50% of these originate from convection (Luo & Rossow 2004, Riihimaki et al. 2012)

Process-oriented UT cloud system behaviour

convective core fraction within system proxy for system life stage

Protopapadaki et al. 2017

Convective core size increases up to system maturity & then decreases Convective rain rate and anvil emissivity decrease

Process-oriented UT cloud system behaviour

convective core temperature proxy for convective depth (mature systems)

increasing convective depth

cloud system size / max rain rate increase with convective depth, *land – ocean differences : difference in entrainment (Takahashi et al. 2017)* Thin cirrus in/around anvil increases with convective depth *(UT environmental predisposition or UT humidification from cirrus outflow ?)*

Methodology: The AIRS/IASI simulator

model grid cell

UT Cloud System Concept to assess GCM parameterizations

analyze GCM clouds as seen from AIRS/IASI, via simulator M. Bonazzola, LMD & construct UT cloud systems

-> evaluation of GCM convection schemes / detrainment / microphysics

LMDZ CTRL

4. What is the effect of including new v_m – De parameterizations in the LMDZ GCM?

Tuning parameters concerning high clouds for radiation balance

High cloud cover

New parameterizations: More high cloud cover than in CTRL, **in better agreement with observations** (except at higher latitudes)

Improvement: Less Cb in midlatitudes

Improvement for F07F15: more Ci

Improvement: more thinCi (more thinCi in polar regions than in obs., but thin clouds over ice difficult to detect)

UT Cloud System Concept to assess GCM parameterizations

analyze GCM clouds as seen from AIRS/IASI, via simulator M. Bonazzola, LMD & construct UT cloud systems

-> evaluation of GCM convection schemes / detrainment / microphysics

Goal: build coherent v_m- De parameterization

nominal fall speed

v_m = **0.3** x f(IWC)

De = f(T), ε = f(De, IWC)

scaled \boldsymbol{v}_{m} too small compared to observations

 $v_m = 0.9 \times f(IWC, T)$ $De = f(v_m)$ Heymsfield et al. 2003 v_m increases with IWC & T, v_m closely related to De

Deng & Mace 2008 $v_{\rm m}$ increase with IWC weaker towards warm T

Field et al. 2007, Furtado et al. 2015 PSD moment parameterization

Rad. balance -> precip. efficiency, UT hum variability

horizontal cloud system emissivity structure sensitive to v_m, De

Analysis of cloud systems

Top: Temperature Bottom: Emissivity

Improvement of :

- emissivity (less emissive cloud systems),
-Temperature (warmer cloud systems).

CTRL F07F15+De(v_m) F07F15+De(IWC,T) DM08+De(v_m)

Analysis of cloud systems

Improvement of cloud system sizes

	Tropics	Midlatitudes
data	233 (473)	88 (132)
	66 (143)	16 (28)
F07F15+De(v _m)	98 (427)	47 (107)
F07F15+De(IWC,T)	91(376)	47 (108)
DM08+De(v _m)	142 (446)	38 (83)

For convective/ frontal cloud systems

CTRL F07F15+De(v_m) F07F15+De(IWC,T) DM08+De(v_m)

process-oriented UT cloud system behaviour

including T dependency of v_m -> larger spread in T

more realistic v_m –De very promising: leads to more realistic anvil size development and thin Ci increasing

Next steps: integrate single scattering properties developed by *Baran et al. 2016* from PSD's of F07 more realistic UT humidity variability threshold (AIRS climatology of *Kahn et al. 2009, 2011*) precipitation – detrainment efficiency parameterization

Conclusions

- 2 bulk ice cloud schemes which coherently couple v_m (cloud physics) and De (cloud radiative effects) have been constructed from existing parameterizations

The new schemes use a **realistic** v_m (about 3 x larger than the original, tuned v_m in LMDZ), which also depends on IWC & T, instead of IWC alone De is now linked to (IWC,T) or directly to v_m

-> UT water sub-grid variability had to be reduced for radiation balance

 Cloud System diagnostics provides additional constraints: new bulk ice schemes -> larger cloud systems & slightly less emissive anvils, in better agreement with AIRS observations

- Cloud System Concept links anvils to convection
 -> allows process-oriented evaluation (behavior of anvils with increasing convective depth, along statistical life cycle)
- new ice cloud schemes seem to improve this behavior, compared to observational cloud system analysis
- AIRS-IASI cloud observational simulator will be made available in COSP