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Life cycle of anvil clouds:
temporal evolution and controlling factors
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CiPS: anvil cirrus detection and properties
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« CIPS is a set of four artificial neural networks using thermal SEVIRI observations
« CIiPS detects ice clouds
« CIPS determines ice optical thickness, IWP, cloud top height, effective radius and opacity

340 Standard Daylime

ction

i L

80
2 60
a
O ......
T 40 s

20 [

~~~~~~ i

L35

HEH B A T B
8.01 0.10 1.00 2.00

Logarithmic scale «— Linear scale

J- —— 10T cavior
CiPS: Cirrus Properties from SEVIRI Strandgren et al. 2017a,
Y R . T

3.00 4.00

2017@]



Cb-TRAM: detection of convection Cb-TRAM

» Stage 2 (rapid growth of severe convective cells):
rapid cooling of high cloud tops in consecutive WV
images.

« Stage 3 (mature convective cells / active cell cores
with cirrus anvil): WV temperature close to or
smaller than the temperature of the current
tropopause + large local spatial inhomogeneity of
High Resolution Visible (HRV) reflectivity.

(a) METEOSAT-9, HRV, 2 June 2008, 14:00 UTC (b) (c)
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Cb-TRAN: Cb Tracking and Monitoring [ Zinner et al. 2008, 2013, Merk and Z/nner 2013
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Anvil tracking: an overlap technique
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Model data: ERAS

« Air temperature, relative humidity (RH), convective available
potential energy (CAPE) and horizontal wind analysis data are
used to characterise the meteorological conditions in which

convective cumulonimbus clouds and anvil cirrus form.
 Resolutions: 31 km, 1 h
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Life cycle of 132 isolated mid-latitude anvils in July 2015
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Temporal evolution: spatial extension and life time
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Temporal evolution: Cloud Top Height (CTH)
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CTH increases until convection ceases.

Anvils sink faster as convection ceases if the convective strength is weaker.

For the strongest 25%, the median CTH decreases by 0.8 km in 2 h as convection
ceases, for the weakest 25%, the decrease in height is 2 km.
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Temporal evolution: Ilce Water Path (IWP)
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Anvils thin out fast after convection has ceased.

There is no clear relationship between CS and IWP.

IWP values are very similar starting approx. 4 h after convection : only the
weakest 25% reach lower values.

Approx. 4 h after convection IWP is not controlled by convection. Is ice
supersaturation the main controlling factor?
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Temporal evolution: Effective Radius (REF)
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Stronger convection produces larger ice crystals.
After convection the decrease in REF is faster for strong systems.
3 h after convection: only small differences among CS classes, REF is no longer
controlled by convection. Large ice crystals have sedimented out, water vapour
deposition (or nucleation of new particles) controls persistence? l




Factors controlling spatial extension and persistence
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Anvil persistence after convection has ceased / h

Lower RHi (< 30%) generally leads to small and short-lived anvils.

Higher RHi (> 60%) govern larger and more long-lived anvils.

Most of the large long-lived anvils tend to have moderate horizontal wind speeds

(< 22 m/s) and/or small vertical wind shear (< 8 m/s) Strandgren, PhD thesis, 2018
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Factors controlling persistence
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« More long-lived anvils are associated with higher RHi in the upper troposphere.
« Higher wind speeds in the upper troposphere tend to reduce anvil persistence after
convection has ceased.
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Factors controlling spatial extension
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« Higher RHi in the upper troposphere is associated with larger anvils.
« Higher wind speeds in the upper troposphere tend to reduce anvil spatial extension.
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Conclusions

132 isolated anvil clouds have been tracked in July 2015 with MSG/SEVIRI.
Large variability of observed spatial extension and life time.

During convection large particles are produced, with strong systems producing
larger particles.

As convection has ceased the anvils sink and thin out fast. After 2-3 h smaller ice
particles remain that can live for many hours if ambient conditions (especially
RHi) are favourable.

Convective strength appears to have no impact on the ice crystal size and IWP of
ageing anvils.

High horizontal wind speeds in the upper troposphere tend to reduce the anvil
cirrus lifetime and spatial extension.

i DLR




