

Roles of Convection in the Maintenance of Tropical Margins

HIRO MASUNAGA (Nagoya University) IN COLLABORATION WITH BRIAN MAPES (University of Miami)

Bimodality of tropical water vapor

The tropical water vapor histogram has double peaks on each side of a 48-mm minimum.

Mapes et al., GRL, 2018

UTCC PROES Meeting, Paris 23 Oct 2018

Bimodality of tropical water vapor

The tropical water vapor histogram has double peaks on each side of a 48-mm minimum.

But climate models do not always reproduce it.

Mapes et al., GRL, 2018

Bimodality of tropical water vapor

The tropical water vapor histogram has double peaks on each side of a 48-mm minimum.

- Separating the *moist deep tropics* and *dry subtropics*.

Mapes et al., GRL, 2018

Sharp tropical margins

A lower-tropospheric air mass often moistens rapidly as it crosses the 48-mm contour (or "tropical margins").

Sharp tropical margins

A lower-tropospheric air mass often moistens rapidly as it crosses the 48-mm contour (or tropical margins).

Sharp tropical margins

A lower-tropospheric air mass often moistens rapidly as it crosses the 48-mm contour (or tropical margins).

Q. What brings about the sharp tropical margins?

A-Train satellite measurements (except for horizontal wind) are analyzed for cloud and atmospheric parameters.

- Global tropical oceans $(25^{\circ}S-25^{\circ}N)$ for July 2006 – December 2009.

Parameters	Instrument	Data Product
Cloud cover	CloudSat-CALIPSO	2B-GEOPROF-LIDAR R04
Q_R	CloudSat-CALIPSO	2B-FLXHR-LIDAR R04
CWV, P , u_{10} , and SST	AMSR-E	RSS daily v7
E	AMSR-E	RSS + bulk equation ⁽¹⁾
$q_v(p)$ and $T(p)$	AIRS	AIRX2RET v6
$v^*\!(p)$ (2)	-	ERA Interim (3)

(1) Surface q_v is derived from CWV and SST (Masunaga and L'Ecuyer, JC, 2010)
(2) v^{*} is the horizontal wind projected onto the CloudSat-CALIPSO track.
(3) Interpolated in time to A-Train overpasses (1:30 am/pm)

Composite method for the tropical margins

All CloudSat-CALIPSO tracks are composited in such a way as they are centered on the most poleward 48-mm value.

Composite cloud cover around CWV=48 mm

All CloudSat-CALIPSO tracks are composited in such a way as they are centered on the most poleward 48-mm value.

Composite CWV and Precipitation

Composite CWV and Precipitation

Diabatic forcing breakdown

Diabatic forcing breakdown

 $LE + S + \langle Q_R \rangle > 0$ on the tropical side of the 48-mm margin.

 $LE + S + \langle Q_R \rangle < 0$ on the subtropical side of the 48-mm margin.

Climatological energy balance, $LE + S + \langle Q_R \rangle \sim 0$, is achieved when CWV ~ 48 mm (=CWV_{eq}) over tropical oceans.

Moisture/MSE budget analysis

$$\partial_t \langle q \rangle = - \langle v \partial_y q \rangle - \langle \omega \partial_p q \rangle + E - P$$

$$\partial_t \langle h \rangle = -\langle v \partial_y h \rangle - \langle \omega \partial_p h \rangle + LE + S + \langle Q_R \rangle$$

With the hypothesis that the composite plots represent a steady meridional flow $(\rightarrow D_t \langle q \rangle = \langle v \partial_y q \rangle).$

Vertical advection is estimated as the residual.

Since ω from reanalysis may not be reliable enough, the vertical advection is diagnosed as the residual (rather than directly from ω) so the budget closure is guaranteed.

Moisture/MSE budget analysis

Moisture/MSE budget analysis

Vertical mode decomposition: Method

Mode decomposition into $\mathbf{1}^{st}$ and $\mathbf{2}^{nd}$ modes

$$\omega = \Omega_1 \widehat{\omega}_1 + \Omega_2 \widehat{\omega}_2$$

The coefficients α_1 and α_2 are determined so they satisfy the vertical advection of q and s(= h - Lq). (a simplified version of Masunaga and L'Ecuyer, JAS, 2014)

$$\begin{array}{l} \langle \omega \partial_p q \rangle = \Omega_1 \langle \widehat{\omega}_1 \partial_p q \rangle + \Omega_2 \langle \widehat{\omega}_2 \partial_p q \rangle \\ \langle \omega \partial_p s \rangle = \Omega_1 \langle \widehat{\omega}_1 \partial_p s \rangle + \Omega_2 \langle \widehat{\omega}_2 \partial_p s \rangle \end{array} \xrightarrow{\hspace{1cm}} \Omega_1 \text{ and } \Omega_2$$

Vertical mode decomposition: VADV

Vertical mode decomposition: $\boldsymbol{\omega}$

Relation to radiative heating profiles

Relation to radiative heating profiles

Schematic summary

23 Oct 2018