Cloud-convection feedbacks

The ‘breathing’ of the tropical troposphere
(Hakuba et al., 2018 —in prep)

Amplification of the hydrological cycle under ENSO
(Stephens et al., 2018; GRL)

Graeme Stephens, NASA JPL



The ‘breathing” of the tropical troposphere
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Figure 1: a) Annual cycle (2006-2015) of (top left) thermal tropopause height ‘TROH’ (GPS-RO,

b A

(10S-10N). b) Annual cycles of TROH, TEB, tropical SST and BDC index with-annual means.

removed. (Bottom) ¢) Interannual variability in TROH and EEI based on six-months running:

means of monthly anomalies. 7




EEl variation largely driven by ENSO ( 4mnth lag) =TROH —ENSQO?
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TRO breaths throughout tropics
(km) with some spatial variability

CF pattern due to TRO breathing




tropopause height (meters)
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1) We observe a strong anti- correlation
between interannual variations of energy
into the tropics and the height of the
tropopause - ie less energy in, the deeper
the atmosphere

2) The interannual variation of EEl arises
from variations in clear sky LW emission
and cloudy sky shortwave reflection

Does this correlation between EEI and
tropopause height expose feedbacks
between clouds & their SW radiation
properties and the depth of the troposphere
and the subsequent ability of the tropics to
remove heat build up by emission?



Breathing of EEI?

Regression against bulk change in tropopause height (quite similar to ENSO

reg I‘ESSIOI’]) Blue (negative) in LW and SW fluxes yields red (positive) in EEI
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b S — I Although LW cloud was masked and did not correlate well with EEI
changes in bulk, pattern is very distinct and opposite of SW cloud. It
Water vapor (WV) appears responsible for positive EEl near deep convective region.

Looking at maps, the LW fluxes seem to govern the EEI change!

In contrast to bulk regression, LW clear decreases slightly where
strongest increase in WV, and enhanced in drying region. Averaged,
LW clear increases while WV increases in deep tropics.




’h & We don’t yvet know the consequence of this finding on the larger

aspects of the Earth system

”Simple” feedbacks for deep
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« Satellite data demonstrate regional
super C-C intensification of
hyd rological cycle in response to
warm phase of ENSO

= Observations and global climate
miodels show similar responses and
evidence for large-scale dynamical
response to ENSO
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GISS SSTs, Nino3, Nino3ex P
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Figure 1. (a) The global distribution of the linear regression slope representing the response of GPCP precipitation (TP) to SST variability in the Nino3ex region
identified in panel b (gray box). Superimposed is the MERRA-2 surface wind response and the mean northern and southern boundaries of the ITCZ for the 2000-2015
period and the 20°N and 20°S boundaries defining the tropics. (b) The response of AIRS ice doud cover (HCF; o) together with the Nifio3ex region (grey box)

and a larger Nifo3 + 4ex region (black bax), which captures most of the positive responses of convection. The Nifno3ex region is a latitudinally extended version of
the Nino3 region and was determined by the extent of the mean location of the ITCZ boundaries in (a). Contours represent El Nifno SST anomaly composites
(winters of 2006, 2009, and 2015) at ~0.25 K (dashed) and at +1 K (solid). (c) Response of AIRS 200-500 hPa layer mean relative humidity (RH). This response is used to
identify the regions of responses that are warming and moistening (referred to as “moistening region”) and cooling and drying (“drying region”) (d) Scatterometer
surface wind and divergence responses (div) to the Nifno3ex warming. Stippling in (b) and (c) indicates where the regressions correlate at |0.2| or higher.
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Semmary

ENSO is an example of a coupled dynamical-radiative-convective system — its all about

4 Reduced high clouds, drier heating coupled to dynamics
troposphere and enhanced Atmosphere produces reinforcing (+ve) feedbacks and the surface opposing (-ve) feedbacks
radiative cooling to space and as envisaged in Webster 1994

increased subsidence
Regional responses of the condensed water properties (clouds and precipitation) are far

from linear and do not follow the responses expected from simple CC thermodynamic
arguments.

4 Enhanced surface heat
flux

1 Weakened easterlies,
weakened ocean mixing and
& /

i creases SST +ve Bjerknes feedback

2 Warmer SSTs &
-ve heat flux feedback
reduced surface heat fluxes flux f

3 Enhanced precipitation,
latent & radiative heating

3 & 4 Increased high clouds
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