

Observed cloud anomalies associated with the North Atlantic Oscillation and their radiative feedback

Georgios Papavasileiou¹, Aiko Voigt^{1,2}, Peter Knippertz¹

¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany ²Lamont-Doherty Earth Observatory, Columbia University, New York, USA

Anomalous cloud-radiative effects damp the NAO

Li et al., 2016

Li et al., 2016

Anomalous cloud-radiative effects damp the NAO

What is the impact of the cloud-radiative effects on the NAO?

What is the impact of the cloud-radiative effects on the NAO?

What is the impact of the cloud-radiative effects on the NAO?

Analyze 5-day mean data: CloudSat/CALIPSO CERES-Syn1deg ERA-Interim reanalysis & forecasts

High-level cloud incidence climatology

High-level cloud incidence climatology

High-level cloud incidence

High-level cloud incidence

Mid-level cloud incidence

High-level cloud incidence

Mid-level cloud incidence

Low-level cloud incidence

Mid-level cloud incidence

Low-level cloud incidence

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

High-level cloud incidence

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

Mid-level cloud incidence

Low-level cloud incidence

Atmospheric Cloud Radiative Effects

Vertical profiles of the anomalies associated with NAO

Data: CloudSat/CALIPSO

Vertical profiles of the anomalies associated with NAO

Data: CloudSat/CALIPSO

Data: CloudSat/CALIPSO

Vertical profiles of the anomalies associated with NAO

CRE anomalies are robust across different datasets

Knippertz & Fink, 2008 Fink et al., 2012

$$\frac{\partial p_{sfc}}{\partial t} = \rho_{sfc} \frac{\partial \phi_{p_2}}{\partial t} + \rho_{sfc} R_d \int_{sfc}^{p_2} \frac{\partial T_v}{\partial t} d\ln p + g(E - P) + RES_{PTE}$$

$$Dp \qquad D\phi \qquad ITT \qquad EP$$

Knippertz & Fink, 2008 Fink et al., 2012

 $\frac{\partial p_{sfc}}{\partial t} = Dp$

 $\rho_{sfc}R_d \int_{sfc}^{p_2} \frac{\partial T_v}{\partial t} d\ln p + g(E-P) + RES_{PTE}$ ITT EP

Knippertz & Fink, 2008 Fink et al., 2012

 $\frac{\partial p_{sfc}}{\partial t} = Dp$

Knippertz & Fink, 2008 Fink et al., 2012

ITT =

 $ITT = + \rho_{sfc} R_d \int_{sfc}^{p_2} - \vec{v} \cdot \vec{\nabla}_p T_v d\ln p$

Temperature Advection

Cloud-radiative effects damp the NAO+

Summary

The changes in clouds associated with the NAO lead to substantial changes in cloud-radiative effects which leads to a heating dipole in the N. Atlantic region.

The heating dipole suggests that the anomalous CRE associated with the NAO have a negative feedback on the NAO timescale from the perspective of the surface pressure tendency equation.