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Grand	Challenge	on	Water	Resources	

The	overarching	ques8ons:	
ü How	can	we	beBer	understand	and	predict	precipita8on	variability	
and	changes?	

ü How	do	changes	in	land	surface	and	hydrology	influence	past	and	
future	changes	in	water	availability	and	security?	

	
	

One	of	the	specific	ques8ons	on	precipita8on	modeling:	
ü How	do	models	become	beBer	and	how	much	confidence	do	we	
have	in	climate	predic8ons	and	projec8ons	of	precipita8on?	

From	Trenberth	and	Asrar,	2014,	Surv.	Geophys.	



Progresses	in	Numerical	Weather	
Modeling	and	Predic8ons 

Daily Max Temperature Forecast MAE QPF Skill Scores 

Novak et al., WAF, 2013 

NCEP Precipitation and Temperature Forecasting Skills 



How	to	Improve	Numerical	Weather	
Modeling	and	Predic8ons?	
• Enhance	Model	Physical	RepresentaHons	

–  BeXer	models	
–  Higher	space/Hme	resoluHon	
–  BeXer	numerical	schemes	
–  MulH-model	ensemble	predicHons	

• Enhance	RepresentaHons	of	External	Forcings	and	IniHal/
Boundary	CondiHons	
–  BeXer	ObservaHonal	Systems		
–  BeXer	Data	AssimilaHon	Methods	

• Enhance	the	EsHmaHon	of	Model	Parameters	
–  QuanHfying	parametric	uncertainHes	
–  OpHmize	model	parameters	to	match	simulaHons	with	observaHons	



Two	New	Approaches	to	Improving	
Precipita8on	Predic8ons	

• Automatic model calibration to improve precipitation 
predictions 

• A statistical based approach to generate perturbed 
physics ensemble precipitation predictions 
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Challenges	in	Automa8c	Calibra8on	
of	Large	Complex	Models	

• High-dimensionality	of	the	uncertain	parameters	(10’s	-100’s)	

• High-dimensionality	of	the	model	outputs	(can	be	millions)	

• Difficult	to	prescribe	parameter	uncertainHes	(the	priors)	

• Models	may	be	expensive	to	evaluate	(many	CPU-hours)	

• Complex	models	show	highly	nonlinear	(may	be	disconHnuous)	input-
output	relaHonships	

• Data	scarcity	for	the	full	system	(difficult	to	calibrate)	

• Models	are	oden	created	by	data	far	from	operaHng	condiHons	

• extrapolaHon	may	be	needed	

•  “Unknown	unknowns”	can	greatly	complicate	the	UQ	process.	



A	Model	Calibra8on	Strategy	For	
Large	Complex	Models	
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UQ-PyL	–	Uncertainty	Quan8fica8on	
Pthyon	Laboratory	

• A	new,	general-purpose,	cross-plahorm	UQ	framework	with	a	
GUI	

• Made	of	several	components	that	perform	various	funcHons,	
including		
–  Design	of	Experiments	
–  Sta2s2cal	Analysis	
–  Sensi2vity	Analysis	
–  Surrogate	Modeling	
–  Parameter	Op2miza2on;	

• Suitable	for	parametric	uncertainty	analysis	of	any	computer	
simulaHon	models	

• Download:	hXp://www.uq-pyl.com	



Op8miza8on	of	the	WRF	Model	
Parameters	

• Weather	and	Research	Forecast	(WRF)	is	a	widely	used	regional	weather	
and	climate	modeling	system.		The	model	includes	seven	major	physical	
processes:		

• Microphysics		
• Cumulus	Cloud	
• Surface	Layer		
• Land-Surface		
• Planetary	Boundary	Layer	
• Longwave	RadiaHon	
• Shortwave	RadiaHon	

•  2-level	nested	grids	
–  Level	1:	27km, 60×48	grids	
–  Level	2:	9km,	87x55	grids	



number  scheme  name  Default range description  

1 Surface layer  
(module_sf_sfclay.F) 

xka  0.000024 [0.000012  0.00005]  The parameter for heat/moisture exchange coefficient  

2 CZO  0.0185 [0.01  0.037] The coefficient for coverting wind speed to roughness length 
over water  

3 

Cumulus 
(module_cu_kfeta.F) 

pd  0 [-1  1] The coefficient related to downdraft mass flux rate 

4 pe 0 [-1  1] The coefficient related to entrainment mass flux rate 

5 ph 150 [50  350] Starting height of downdraft above USL 
6 TIMEC  2700 [1800  3600] Compute convective time scale for convection  

7 TKEMAX  5 [3 12] 
the maximum turbulent kinetic energy (TKE) value between 
the level  of  free convection (LFC)and lifting condensation 

level (LCL)  
8 

Microphysics 
(module_mp_wsm6.F) 

ice_stokes_fac   14900 [8000  30000] Scaling factor applied to ice fall velocity  
9 n0r   8000000 [5000000 12000000] Intercept parameter rain   
10 dimax   0.0005 [0.0003  0.0008] The limited maximum value for the cloud-ice diameter   

11 peaut   0.55 [0.35  0.85] Collection efficiency from cloud to rain auto conversion   

12 short wave radiation 
(module_ra_sw.F)  

cssca   0.00001 [0.000005  0.00002] Scattering tuning parameter in clear sky   
13 Beta_p   0.4 [0.2  0.8] Aerosol scattering tuning parameter   

14 Longwave 
(module_ra_rrtm.F) Secang   1.66 [1.55  1.75] Diffusivity angle   

15 
Land surface  

(module_sf_noahlsm.F) 

hksati   0 [-1  1] hydraulic conductivity at saturation   
16 porsl   0 [-1   1] fraction of soil that is voids   
17 phi0   0 [-1   1] minimum soil suction  
18 bsw   0 [-1  1] Clapp and hornbereger "b" parameter   

19 

Planetary Boundary 
Layer  

(module_bl_ysu.F) 
 

Brcr_sbrob   0.3 [0.15  0.6] Critical Richardson number for boundary layer of  water   

20 Brcr_sb   0.25 [0.125   0.5] Critical Richardson number for boundary layer of land   

21 pfac   2 [1  3] Profile shape exponent for calculating the momentum 
diffusivity coefficient   

22 bfac   6.8 [3.4  13.6] Coefficient for prandtl number at the top of the surface laer   

23 sm	 15.9	 [12  20]	
Countergradient  proportional coefficient of non-local flux 

of momentum  moh 2002	
 

WRF	Model	Parameters	To	Be	Examined	



2008 
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2010 

Jun Jul Aug 

Forecasted	Events	



The	Experimental	Setup:	Model	Setup	

•  2-Level	nested	grids:	
–  Level	1:	27	km,	with	60x48	grids	
–  Level	2:	9	km,	with	87x55	grids	

• Nine	5-day	forecasts	during	Jun-Aug	from	2008-2010	

• NCEP	reanalysis	data	used	to	iniHate	the	forecasts	

•  23	WRF	model	parameters	examined	for	study	their	sensiHvity	with	
respect	to	precipitaHon	forecast	

•  SensiHvity	method	used:	Morris-One-At-a-Time	(MOAT)	

• OpHmizaHon	method	used:		
–  AdapHve	Surrogate	Modeling-based	OpHmizaHon	(ASMO)	

•  ComputaHonal	cost	
–  4.5	CPUs	for	one	5-day	forecast	
–  Nine	5-day	forecasts	require	180	CPUs	



Summary	of	Parameter	Sensi8vi8es	
to	Different	Model	Outputs	

[Jiping	Quan	et.al.	2016,	RQJMet] 



Automa8c	Op8miza8on	of	WRF	Model:	
The	Experiment	Setup	

•  AdapHve	Surrogate	Modeling	based	OpHmizaHon	(ASMO)	method	is	
used	to	opHmize	the	eight	most	sensiHve	parameters	found	by	global	
sensiHvity	analysis:	

–  Parameter	opHmized:		
•  P3、P4、P5、P8、P10、P12、P16、P21	

–  Performance	measures	Used:	
• Mean	Absolute	Error	(MAE):	
•  Thread	Score	(TS)	
•  Bias	Score	
•  SAL	(Structure,	Amplitude,	LocaHon)	

–  Three	OpHmizaHon	Runs:	
• OpHmize	P	only	
• OpHmize	SAT	only	
• OpHmize	both	P	and	SAT	



The	Op8miza8on	Results	



Improvement	in	Performance	Measure	-	MAE	



Improvement	in	Performance	Measure		
Based	on	Lead-8mes	



Improvement	in	Performance	Measure	-	TS	
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No NB ND 

NCNBNA
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Category Threshold：mm 

Light Rain (0.1，10］ 

Moderate Rain (10, 　25] 
Heavy Rain (25，50］ 

Storm (50，100］ 

Severe Storm (100，250］ 



Improvement	in	Performance	Measure	–	
Other	Scores	(Bias	&	SAL)	



The	Valida8on	Events 

CalibraHon	events:	
-  Dashed	lines	
	
ValidaHon	events:	
-  Solid	lines	



Improvement	in	Valida8on	Events 



Improvement	in	Valida8on	Events	



Summary	and	Discussion	of	WRF	Parametric	
Uncertainty	and	Op8miza8on	Research	

• Considerable	parametric	uncertainHes	exist	in	WRF	model	

• The	most	sensiHve	parameters	idenHfied	for	precipitaHon	
and	surface	air	temperature	are:	
–  P3,	P4,	P5,	P8,	P12,	P16,	P18,	and	P21	

• OpHmizaHon	experiments	with	the	eight	most	sensiHve	
parameters	for	9	calibrated	events	has	improved	the	model	
performance	by	14-18%	

• Other	performance	measures	for	calibrated	events	
confirmed	the	improvement	

• ValidaHon	using	15	independent	storm	data	shows	an	
improved	model	performance	by	18-21%	



The	Perturbed	Physics	Ensemble	
Precipita8on	Predic8ons	

Ø WRF	is	millions	of	models	in	one	plaaorm	(WRF3.7.1):	

ü  Total potential number of combinations: 
23Í8Í8Í7Í16Í13=2143232 

Ø The	Objec8ves:	
ü  To	idenHfy	20-30	good	combinaHons	of	WRF	parameterizaHon	
schemes	based	on	common	skill	metrics,	including	biases,	
thread	scores,	ranked	probability	scores,	ROCs,	etc.	
§  Accuracy	
§  Resolu2on	
§  Reliability	

 

What combinations? 



The	Guiding	Principles	

Ø SelecHon	 of	 schemes	 starts	 with	 the	 physical	 process	 that	 exhibits	 the	
largest	 variance.	 Then	 proceed	 with	 the	 process	 with	 the	 next	 largest	
variance,	and	so	on.	

Ø If	 a	 scheme	 has	 appeared	 in	 the	 best	 combinaHons	 based	 on	 any	
performance	metrics,	keep	this	scheme	in	the	pool	of	potenHal	schemes;	

Ø If	a	scheme	has	appeared	in	the	worst	combinaHons	consistently,	eliminate	
this	scheme	from	the	pool	of	potenHal	schemes;	

Ø If	a	scheme	always	shows	up	in	the	middle	performing	category,	then	keep	
the	ones	which	exhibit	the	largest	variance	in	performance	metrics.	



The	Selec8on	Process	
Ø Step	1:	Remove	the	schemes	not	suitable	based	on	prior	knowledge	and	experience;	
Ø Step	2:	Sample	a	pre-specified	number	of	combinaHons	(~100-200)	using	a	uniform	
design	of	experiment	approach;	

Ø Step	3:	Compute	the	variances	of	all	physical	processes.	Start	with	the	process	with	
the	highest	variance	and	then		
Ø Perform	the	Tukey	hypothesis	test	to	evaluate	the	selected	combinaHons.		
Ø Retain	the	schemes	involved	in	the	best	performing	combinaHons	
Ø Get	rid	of	the	schemes	that	are	consistently	in	the	worst	performing	
combinaHons.		

Ø For	the	schemes	in	the	moderate	performing	combinaHons,	analyze	the	variance	
of	the	performance	metrics	for	each	scheme.	Retain	the	schemes	whose	
variance	is	relaHvely	large	

Ø Step	4:For	the	remaining	schemes,	start	a	new	round	of	screening	by	sampling	a	
new	set	of	combinaHons	using	a	uniform	design,	and	the	repeat	Step	2	and	Step	3;	

Ø Step	5:	Stop	when	no	more	schemes	can	be	removed	based	on	the	guiding	
principles	or	when	20-30	combinaHons	are	remaining;	

Ø Step	6:	Construct	the	ensemble	from	the	remaining	schemes,	and	conduct	ensemble	
forecasHng	experiments	and	validaHon.	



The	Tukey	Honest	Significance	Difference		
(TUKEY-HSD)	Test	

Ø  Tukey	HSD	is	a	single-step	mulHple	comparison	procedure	and	staHsHcal	test.	
It	 can	 be	 used	 on	 raw	 data	 or	 in	 conjuncHon	 with	 an	 ANOVA	 (Post-hoc	
analysis)	to	find	means	that	are	significantly	different	from	each	other.	

Ø  It	compares	all	possible	pairs	of	means,	and	is	based	on	a	studen2zed	range	
distribu2on	(q).	

Ø  Tukey's	test	compares	the	means	of	every	treatment	to	the	means	of	every	
other	 treatment;	 that	 is,	 it	 applies	 simultaneously	 to	 the	 set	of	all	pairwise	
comparisons	

								𝜇↓𝑖 − 𝜇↓𝑗 	
	
Ø  It	 idenHfies	 any	 difference	 between	 two	 means	 that	 is	 greater	 than	 the	

expected	 standard	 error.	 The	 confidence	 coefficient	 for	 the	 set,	 when	 all	
sample	 sizes	 are	 equal,	 is	 exactly	 1	 −	 α.	 For	 unequal	 sample	 sizes,	 the	
confidence	coefficient	is	greater	than	1	−	α.	In	other	words,	the	Tukey	test	is	
conservaHve	when	there	are	unequal	sample	sizes.	



La8n	Hypercube	Sampling	
Ø  A	mulHdimensional	straHfied	sampling	method;	
Ø  Define	the	number	of	samples	that	parHcipated	in	the	calculaHon;	
Ø  Devide	each	input	into	N	columns	with	equal	probability	
			                    𝑥↓𝑖0 < 𝑥↓𝑖1 < 𝑥↓𝑖2 < 𝑥↓𝑖3 <⋯< 𝑥↓𝑖𝑛 <⋯< 𝑥↓𝑖𝑛 	
																							besides	𝑃(𝑥↓𝑖𝑛 <𝑥< 𝑥↓𝑖𝑛+1 )= 1/𝑁 	
Ø  For	each	column,	only	one	sample	 is	 taken,	and	 the	 locaHon	of	 the	bin	 in	each	

column	is	random.	

                                 X 	
	
	

            X	
	
                      X 	
	
X	
	
  	

                                             X	
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The	Screening	Criteria	–	ETS	and	Bias	

𝐸𝑇𝑆= 𝑎−𝑟/𝑎+𝑏+𝑐−𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑟=(𝑎+𝑏)(𝑎+𝑐)/𝑛 

𝐵𝐼𝐴𝑆=(𝑎+𝑏)/(𝑎+𝑐) 
Rainfall 
intensity �

Cumulative 
precipitation/mm(24h)�

Drizzle � (0,10]�
Moderat

e rain � (10,25]�

Heavy 
rain � (25,50]�

Rainstor
m � >50 �



The	Model	Setup	

Ø  WRF	3.7.1	

Ø  Domain:	The	Greater	
Beijing	Area	

Ø  113.35°𝐸—
119.55°𝐸	

Ø  38.35°𝑁—
42.25°𝑁		

Ø  D01	domain:	9	km	
resoluHon	

Ø  D02	domain:	3	km	
resoluHon	

Ø  VerHcal	levels:38	levels	



The	Driving	Data	and	Observa8ons	
Ø  IniHalizaHon	data	and	lateral	boundary	data:	GFS	data	

Ø  Global	Forecast	system	
Ø  Pgbh:0.25°×0.25°grids	
	

Ø  ObservaHons	for	model	performance	evaluaHon:	Chinese	PrecipitaHon	
Analyses,	CPA	
Ø  Source:	China	Meteorological	Bureau	
Ø  Using	 the	 CMORPH	 data:	 satellite	 retrival	 of	 precipitaHon	 by	 NCEP	 as	

background,	intergrate	with	observaHon	data	by	30	thousand	staHons;	
Ø  0.1°×0.1°precipitaHon	data	hourly	

2014年 2015年 

6.9-6.10 6.5-6.6 
6.15-6.16 6.11-6.12 
6.20-6.21 6.28-6.29 

7.3-7.4 7.14-7.15 
7.14-7.15 7.16-7.17 
7.21-7.22 7.18-7.19 
7.28-7.29 7.21-7.22 
8.9-8.10 7.29-7.30 
8.12-813 8.2-8.3 
 8.27-8.28 8.18-8.19 



The	Pre-Screening	of	the	Schemes		

Ø  The	following	schemes	removed	ader	pre-screening:		
•  MP:	Kessler	scheme:	used	in	ideal	condiHon	
•  MP:	NSSL	2-moment	scheme	:used	in	condiHon	that	resoluHon	is	

less	than	2km	
•  The	long	wave	and	short	wave	schemes	are	treated	in	tandems	
•  Only	three	cumulus	parameterizaHon	schemes	are	considered	

	

Ø  The	remaining	schemes	ader	preliminary	screening：	
	
Microphysics	 Long-wave	 Short-wave	 Land	

surface	
PBL+Surface	

layer	
Cumulus	

16(23)	 6(8)	 6(8)	 5(7)	 16	 3(13)	



The	First	Round	Design	of	Experiment		

Microphysics 
(X1) 

Long-wave 
(X2) 

Short-wave 
(X3) 

Land surface 
(X4) 

PBL+Surface layer 
(X5) 

Cumulus 
(X6) 

Levels Replicates Levels Replicates Levels Replicates Levels Replicates Levels Replicates Levels Replicates 
1 7 1 20 1 20 1 24 1 7 1 40 
2 7 2 20 2 20 2 24 2 7 2 40 
3 7 3 20 3 20 3 24 3 7 3 40 
4 7 4　	 20	 4 20 4 24 4 7 
5 7 5　	 20	 5　	 20	 5　	 24	 5　	 7	
6 7 6　	 20	 6　	 20	 　	 6　	 7	
7 7 　	 　	 　	 7　	 7	
8 7 　	 　	 　	 8　	 7	
9 7 　	 　	 　	 9　	 7	

10 7 　	 　	 　	 10　	 7	
11 7 　	 　	 　	 11　	 7	
12 7 12	 7	
13 7 13	 7	
14 7 14	 7	
15 
16 

7 
8 

15 
16	

7 
8	

16 120 6 120 6 120 5 120 16 120 3 120 



ETS	Variances	for	Different	Physical	Processes	

The	precipitaHon	process	is	most	sensiHve	to	microphysics	and	
cumulus	in	terms	of	ETS	variances 



Different	leXers	indicate	significant	difference	between	the	schemes	
The	higher	the	mean	ETS	value,	the	beXer	the	scheme	is.	

The	Tukey	Test	of	ETS	for	Cumulus	

ETS	Screening	results: 	Good:		
	5	
	 	 	In-between:	 	2		
	 	 	Bad:	 	 	1	

A	 A	B	 A	

A	 A	 A	B	

B	

C	

C	

B	



The	Tukey	Test	of	BIAS	for	Cumulus	

BIAS=−|BIAS𝑜𝑟𝑖𝑔−1| 

BIAS	Screening	results: 	No	significant	differences	
	 	 	 	between	the	schemes	



The	Scheme	number � The	Scheme	Name �

2	 BMJ	

5	 Grell-3	

The	Final	Screening	Results	Based	on	Cumulus	

The	Retained	Cumulus	Schemes:	

The	Removed	Cumulus	Scheme:	
The	Scheme	Number	 � The	Scheme	Name �

1	 KF	



The	Tukey	Test	of	ETS	for	Microphysics	

ETS	Screening	results: 	Good:	6,7,8,10,13;	
	 	 	In-between:	2,3,4,5,19,28;		
	 	 	Bad:	11,14,16,21,22.	
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Microphysic
s(9)�

Long(short)-
wave(6)�

Land	
surface(4)�

PBL+Surface	
layer(9)�

Cumulus(2
)�

WSM3	 RRTM	 Noah	
Monin+Boulac	

TKE	 BMJ	

WSM5	 CAM	 RUC	 QNSE+QNSE	 Grell-3	

WSM6	 RRTMG	 CLM4	 MM5+GBM	

Goddard	 New	Goddard	 FLG	 MM5+Boulac	TKE	

Thompson	 FLG	 Pleim-Xiu+ACM2	

Morrison	 RRTMG	fast	 MM5+UW	TKE	

SYU	 Monin+MYJ	

NSSL	2-mom	
W/o	hail	

MM5+ACM2	

Thompson	
aersol-aware	

MM5+MYNN	2.5	

The	Results	of	the	First	Round	Selec8on  
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Microphysic
s(7)�

Long(short)-
wave(5)�

Land	
surface(4)�

PBL+Surface	
layer(7)�

Cumulus(1
)�

WSM3	 RRTM	 Noah	
Monin+Boulac	

TKE	 BMJ	

WSM5	 CAM	 RUC	 QNSE+QNSE	

Goddard	 RRTMG	 CLM4	 MM5+GBM	

Thompson	 New	Goddard	 FLG	 MM5+Boulac	TKE	

Morrison	 FLG	 Pleim-Xiu+ACM2	

SYU	 Monin+MYJ	
Thompson	
aersol-aware	 MM5+MYNN	2.5	

The	Results	of	the	Second	Round	Selec8on		



Serial number mp lw mw land pbl surface cumulus 
1 13 3 3 2 1 8 2 
2 7 7 7 5 1 8 2 
3 28 4 4 3 4 4 2 
4 8 5 5 3 2 2 2 
5 8 4 4 3 1 8 2 
6 8 5 5 3 4 4 2 
7 28 3 3 3 2 2 2 
8 8 5 5 3 4 4 2 
9 10 7 7 3 2 8 2 

10 3 4 4 5 1 5 2 
11 3 4 4 3 4 4 2 
12 4 3 3 2 4 4 2 
13 7 4 4 2 1 5 2 
14 28 4 4 5 1 5 2 
15 7 1 1 2 2 8 2 
16 3 5 5 2 1 12 2 
17 13 1 1 2 2 8 2 
18 4 7 7 3 7 7 2 
19 4 1 1 3 1 12 2 
20 8 7 7 7 7 7 2 
21 28 4 4 7 2 8 2 
22 3 5 5 5 1 5 2 
23 7 1 1 2 2 2 2 

The	Final	Results	of	the	Ensemble	Selec8on	

We	choose	these	schemes	from	the	results	of	round	three	and	four.(Actually,the	performance	between	the	
round	three	and	four	are	preXy	good,	so	we	choose	from	both	of	them).And	then	sort	them	by	the	TS	score. 
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The	Verifica8on	of	Ensemble	
Precipita8on	Predic8ons	

Ø  The	Performance	Skill	Metrics:	

ü  Threat	Score	(TS)	

ü  Ranked	probability	score	(RPS)	

ü  RelaHve	operaHng	characterisHc	(ROC)	

ü  Brier	Score	(BS) 



The	TS	value	of	the	first	24h 

The	TS	value	of	the	second	24h 

Ensemble	vs	Determinis8c	Predic8ons	
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The	RPS	value	of	the	first	24h 

The	RPS	value	of	the	second	24h  𝑅𝑃𝑆=1−𝑅𝑃𝑆𝑜𝑟𝑖𝑔 



The	ROC	Curves	of	The	Ensemble	
Precipita8on	Predic8ons	



The	BS	Score	for	the	Ensemble	Predic8ons	
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Ensemble	size 118 69 32 24 

Drizzle 0.25 0.26 0.27 0.27 

Moderate	rain 0.13 0.16 0.19 0.20 
Heavy	rain 0.06 0.08 0.10 0.11 

Rainstorm 0.03 0.05 0.07 0.07 

Ensemble	size 118 69 32 24 

Drizzle 0.26 0.28 0.28 0.29 
Moderate	rain 0.14 0.17 0.18 0.19 
Heavy	rain 0.06 0.07 0.09 0.09 
Rainstorm 0.02 0.03 0.04 0.05 

The	BS	score	of	the	ensemble	forecasts	(the	first	24h)	

The	BS	score	of	the	ensemble	forecast	(the	Second	24h)	



The	Perturbed	Physics	Ensemble	Summary	

Ø We	experimented	with	a	perturbed	physics	ensemble	selecHon	
procedure,	which	is	based	on	staHsHcal	principles	and	some	heurisHcs.	

Ø  StaHsHcal	approaches	such	as	ANOVA,	Tukey	HSD	Test,	and	LaHn	
hypercube	sampling	are	employed.	

Ø  The	Threat	Scores	and	the	Bias	Score	are	used	as	selecHon	criteria.	
Ø  The	selecHon	aims	to	keep	the	good	performing	schemes,	removing	

the	bad	ones.	For	the	in-between	ones,	we	keep	the	ones	with	large	
variances	in	terms	of	performance	metrics.	

Ø  Ader	four	rounds	of	screenings,	we	obtained	an	ensemble	composed	
of	24	numbers.	

Ø  The	verificaHon	of	the	ensemble	forecasts	showed	that	the	average	
ensemble	forecast	are	much	beXer	than	the	default	determinisHc	
forecast.		

Ø  The	reliability	of	ensemble	forecasHng	doesn’t	decrease	much	from	
the	iniHal	118-member	ensemble	to	the	final	24-member	ensemble.		



Overall	Summary 

• AutomaHc	model	calibraHon	is	a	new	way	to	improve	
numerical	weather	forecasHng	

• A	staHsHcal	based	approach	for	perturbed	physics	
ensemble	precipitaHon	predicHons	has	shown	improved	
accuracy	over	determinisHc	predicHons	and	reasonable	
reliability	
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