

State Key Laboratory of Remote Sensing Science (SLRSS)

# A Water Cycle Observation Mission (WCOM)

### **Jiancheng Shi**

Xiaolong Dong, Tianjie Zhao, Jiyang Du, Lingmei Jiang, Hao Liu, Zhenzhan Wang, Dabin Ji, and Chuan Xiong

"The 29th SSG meeting of the WCRP/GEWEX"

Feb. 6-9, 2017

Sanya, China



# Introduction of WCOM

- 2013, WCOM was selected as one of 8 candidate science driving missions to be launched before 2020; It is only one that for EO in China.
- 2014-2015: Phase-A to study key technologies;
- In Feb., 2015, 3 from 8 candidate missions were selected as the key support missions with full funding for 2014-2015. WCOM is one of them;
- WCOM has passed PDR and CDR. Now, it is under the engineering phase;
- Launch date around 2020.



# Water Cycle & Climate Change

#### Water Cycle /Climate Linkage

• One of the Earth system's major cycles

• The Clausius–Clapeyron equation governs the waterholding capacity of the atmosphere that increases by about 7% per degree Celsius. Expectations: drizzles, storms, ET, speed of water cycle, therefore, hydrological extreme events

#### **Application Linkage**

Basic requirements for monitoring and prediction of water resource, flood, drought, agricultures .....

#### **Key Science Questions**

What are the spatial-temporal distribution characteristics of water cycle components and processes? Are the changing speeding up?



Water in the climate system functions on <u>all</u> time scales (from hours to centuries)





## Available Sensors for Water Cycle

|                                 | Sensor         | Frequency (GHz)                             | vapor        | Preci.       | Temp.        | Soil<br>Moistur<br>e | Freeze<br>Thaw | SWE          | Sea<br>Salinit<br>y | Sea<br>Surface<br>wind |
|---------------------------------|----------------|---------------------------------------------|--------------|--------------|--------------|----------------------|----------------|--------------|---------------------|------------------------|
| Multiple<br>Frequency<br>Sensor | AMSR-E         | 6. 925;10. 65;18. 7;23. 8<br>;36. 5;89      | ~            | $\checkmark$ | $\checkmark$ | $\checkmark$         | $\checkmark$   | $\checkmark$ |                     | $\checkmark$           |
|                                 | GCOM/<br>AMSR2 | 6. 9;7. 3;10. 65;18. 7;23<br>. 8;36. 5;89   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$         | $\checkmark$   | $\checkmark$ |                     | ~                      |
|                                 | FY-3/<br>MWRI  | 10.65;18.7;23.8;36.5;<br>89                 | 4            | ~            | ~            | $\checkmark$         |                | $\checkmark$ |                     |                        |
|                                 | SMMR           | 6.6;10.7;18;21;37                           | $\checkmark$ |              | $\checkmark$ |                      | $\checkmark$   | $\checkmark$ |                     | $\checkmark$           |
|                                 | SSM/I          | 19.35;22.235;37.0;85.<br>5                  | $\checkmark$ | $\checkmark$ | $\checkmark$ |                      | ~              | ~            |                     | $\checkmark$           |
|                                 | TRMM/TMI       | 10.65;19.35;21.3;37;8<br>5.5                |              | $\checkmark$ |              |                      |                |              |                     | $\checkmark$           |
|                                 | WindSat        | 6.8;10.7;18.7;23.8;37                       | $\checkmark$ | $\checkmark$ |              |                      |                |              |                     | $\checkmark$           |
|                                 | SSMIS          | 19.35;22.235;37;50-60<br>;91.655;150;183.31 | $\checkmark$ | ~            | ~            |                      |                | ~            |                     | $\checkmark$           |
| Single<br>Frequency<br>Sensor   | ASCAT          | 5. 255                                      |              |              |              |                      |                |              |                     | $\checkmark$           |
|                                 | ERS            | 5.3                                         |              |              |              |                      |                |              |                     | $\checkmark$           |
|                                 | QuikSCAT       | 13.4                                        |              |              |              |                      |                |              |                     | $\checkmark$           |
|                                 | Aquarius       | 1. 413                                      |              |              |              |                      |                |              | ~                   |                        |
|                                 | SMOS           | 1. 41                                       |              |              |              | ~                    |                |              | ~                   |                        |
|                                 | SMAP           | 1.26; 1.41                                  |              |              |              | $\checkmark$         | ~              |              |                     |                        |



# **Problems in SWE inversion**

- Passive microwave (~25km):
  - SMMR
  - SSM/I
  - AMSR-E
  - AMSR2
  - FY-3

AMSR-E B04 product (no pixel mixing decomposition)

Our algorithm ( with pixel mixing decomposition)



 $SD(SWE) = a + b \cdot \left(T_{Bp}(18) - T_{Bp}(37)\right)$ 

- 1. Semi-empirical algorithm: Regional differences, inconsistent accuracy globally
- 2. Vertical inhomogeneous (layered snow), changes in snow characteristics
- 3. Atmospheres

4. Insufficient spatial resolution, horizontally in homogenous of snow (mixed pixel)



Result of atmospheric correction, November 29, 2003. SWE derived from uncorrected AMSR-E (left) and corrected AMSR-E (right).

### **<u>Need</u>**: Spatial observation capacity



### **Problems of Current Techniques**

1、 Single-Frequency: Lack of synergistic observations on the other affecting factors 2、 Multi-Frequency: Lack of optimal frequency on the surface water cycle components 3、 Both: Lack of systematical observations on the characteristics the water cycle

| Parameters         | Disadvantages in<br>Observations                                            | <b>Disadvantages in Inversion</b>                                     |  |  |
|--------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| Soil Moisture      | Weak penetration for high freq.; lack<br>of temperature for low freq. ; RFI | Lack of valid inversion technique on vegetation and surface roughness |  |  |
| SWE                | Low spatial resolution of passive microwave                                 | More considerations needed for snow process and atmosphere conditions |  |  |
| FT                 | Low spatial resolution for passive microwave                                | Limited validity for using fixed<br>Threshold values                  |  |  |
| Sea Salinity       | Lack of temperature and atmosphere observations                             | Lack of surface roughness correction                                  |  |  |
| Sea<br>Evaporation | lack of simultaneous observations on both sea surface and atmosphere        | Uncertainties in the inversion of related parameters                  |  |  |
| Precip.            | <b>Cloud 3D properties</b>                                                  | Need to Discern rain and snow                                         |  |  |



# **Payloads and Configurations**

- 1. IMI, Full Polarized Interferometric Radiometer: Soil Moisture and Sea Salinity
- 2. DPS, Dual Frequency Polarized Scatterometer: SWE and FT
- 3. PMI, Polarimetric Microwave Imager, 6.8~89GHz: Temperature, rain, water vapor, atmosphere correction, and bridge to historical data



| Payloads                     | IMI                      | PMI                                | DPS                  |
|------------------------------|--------------------------|------------------------------------|----------------------|
| Frequency (GHz)              | L, S ,C<br>(1.4,2.4,6.8) | C~W<br>(7.2,10.65,18.7,23.8,37,89) | X, Ku<br>(9.6,14/17) |
| Spatial<br>Resolution (km)   | L: 50, S: 30, C:15       | 4~50 (frequencies)                 | 2~5 (processed)      |
| Swath Width (km)             | >1000                    | >1000                              | >1000                |
| Polarization                 | Full-Pol                 | Full-Pol                           | Full-Pol             |
| Sensitivity                  | 0.1~0.2K                 | 0.3~0.5K                           | 0.5dB                |
| Temporal<br>Resolution (Day) | 2~3                      | 2~3                                | 2~3                  |



### L/S/C Microwave Interferometric Radiometer





Instrument Concept: 1D Microwave Interferometric Radiometer with parabolic cylinder reflector antenna

- Use parabolic cylinder reflector and interferometric technology to achieve High spatial resolution
- Patch feeds and shared reflector to achieve the multi-frequency ability
- Dual-size feeds to enhance the system sensitivity performance



Simulated footprints on the ground

| system                | 1D Interferometry + parabolic cylinder reflector   |  |  |  |  |
|-----------------------|----------------------------------------------------|--|--|--|--|
| frequency             | L: 1.4~1.427GHz, S: 2.64~2.70GHz,<br>C: 6.6~6.9GHz |  |  |  |  |
| Sensitivity           | L-band: 0.1K; S-band: 0.4K; C-band: 0.4K           |  |  |  |  |
| Polarization          | Full pol (H,V,Q,R)                                 |  |  |  |  |
| Antenna               | Reflector:6.0m×6.0m (after deployment)             |  |  |  |  |
| size                  | Feed array: 4m×0.5m                                |  |  |  |  |
| FOV                   | >1000km                                            |  |  |  |  |
| Incidence             | 30~55°                                             |  |  |  |  |
| Spatial<br>resolution | L-band: 50km, S-band: 30km, C-<br>band: 15km       |  |  |  |  |
| revisit               | 2-3 days                                           |  |  |  |  |
| weight                | 250kg                                              |  |  |  |  |
| Data rate             | < 1Mbps                                            |  |  |  |  |



### Advantages in soil moisture retrieval



• **PMI : Surface effective temperature** 

IMI

1) Combination of L- and S-band can solve the polarization effects in vegetation correction.

2) The probability of RFI occurrence at the same area and frequency is vary small. RFI can be avoid by switching L- and S-band .

#### • DPS



Various vegetation types



**Vegetation information of high resolution** 





# **Soil moisture Products**

#### A) Passive microwave (IMI)

L/S/C-bands: 50/30/15 km Experiment with Airborne data: Downscale the L-band Tb (4km) at a scale of 800m using higher resolution Tb of S-band, and its validation with original L-band data Spectral analysis downscaling method for passive microwave



Downscaling using both active and passive



**Passive:** Sensitive to soil moisture but low resolution

Active: High resolution but sensitive to vegetation and roughness

B) Active/passive microwave (IMI/PMI+DPS)

$$T_{Bp} = A + C \frac{\sigma_{vh}^{t}}{\sigma_{vh}} + \left(B + D \frac{\sigma_{vh}^{t}}{\sigma_{vh}}\right) \sigma_{pp}^{t}$$

Active /passive combination of C and X band :

**Products:** Soil moisture estimates at a scale of both 15km and 5km over nominal areas and 30km over forests.



### Advantages of WCOM Payloads Design

|                      | ΙΜΠ                                                                                           | PMI                                                                                               | DPS                                                                                          |  |  |
|----------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Soil Moisture        | 1 More sensitive to land<br>surface<br>2 Minimizing vegetation<br>effects<br>3 Mitigating RFI | 1 Sensitive to temperature<br>2 Observing large-scale<br>surface roughness                        | 1 Surface Roughness and vegetation<br>2 high resolution soil moisture                        |  |  |
| Sea Salinity         | 1 More sensitive to sea<br>surface<br>2 Faraday rotation<br>correction                        | 1 effective correction on<br>atmosphere<br>2 ensitive to sea temperature                          | High resolution Wind Vector                                                                  |  |  |
| S e a<br>Evaporation | Corrections on sea surface roughness                                                          | Sensitive to temperature                                                                          | High resolution Wind Vector                                                                  |  |  |
| FT                   | Obtaining Soil Surface<br>Parameters                                                          | Sensitive to temperature changes                                                                  | 1 Time series techniques for FT<br>detection<br>2 Downscaling techniques for FT<br>inversion |  |  |
| SWE                  | Obtaining Soil Surface<br>Parameters                                                          | Obtaining SWE by scattering effects                                                               | 1 Estimating SWE<br>2 Mitigating Mixed pixel effects                                         |  |  |
| Vapor and<br>Precip. | Helping determine land surface emissivity                                                     | <ol> <li>obtaining Water Vapor</li> <li>Precip. Rate</li> <li>Discerning Rain and snow</li> </ol> | High resolution observations on precip.                                                      |  |  |
|                      | Vital                                                                                         | major                                                                                             | help                                                                                         |  |  |

**The Payloads Design:** 1) Optimal channels for inversion, 2) Effective corrections on affecting factors, 3) Simultaneous observations



# **Objectives of WCOM**

- Overall scientific objectives of WCOM
  - To significantly improve the accuracy and synchronization of measurements for spatial and temporal distribution of global water cycle key elements and system

• To refine the long-term satellite observations over past decades, and to provide a new opportunity to improve water cycle related model.



### 2014-2016 Objectives

#### Science part

1) Further evaluation of science objectives; further optimization of payloads, to achieve higher precision water cycle parameters observation than any existing satellites;

2) Based on the simultaneously multisensor observation, to achieve joint key water cycle parameters and environmental parameters retrieval, and the preliminary algorithm validation;

3) The study of the method to calibration of historical observations of other satellites based on WCOM observations; Water cycle models parameter optimization;

### **Technology part**

1) Design and evaluation of payloads: FPIR, PMI and DFPSCAT

2) To make breakthroughs in key technologies in payloads, and the experimental validation of the key technologies ;

3) WCOM satellite platform design and evaluation based on the requirement of payloads and their observation; Design and evaluation of interface between satellite system and other systems



# **Scientific Application System**





### WCOM data processing Structure

#### WCOM Ground System

Design and test the porotype algorithms for snow water equivalent, soil moisture, soil freeze/ thaw, ocean salinity, atmosphere water vapor and precipitation.





# **SWE retrieval and Validation**

SWE inversion algorithm for DPS scatterometer is developed based on Bicontinuous+VRT model.

Three-year time series measurements at dualpolarization X and Ku bands in Finland Nosrex campaign.











## **Establishments of Historical Data**

Improving the algorithms using the Form long time accurate WCOM measurements series measurements to **WCOM** SWE F/T analyze the Soil Moisture change characteristics AMSR-E 风云3号微波辐射计 VV VV Series 600km

TMI/TRMM 1998—GPM SSM/I(R): 1978 – Now ERS + ASCAT 1991—Now Combined Passive/Active



# **Test from SMOS-AMSR-E**

- input: SMOS soil moisture and AMSR-E observations;
- output: simulated SMOS soil moisture with AMSR-E.











# Model parameter optimization using systematic satellite observations

#### **1**, Parameter optimization using single-element observation

|                              | Changes in model performances     |         |                    |                  |  |  |
|------------------------------|-----------------------------------|---------|--------------------|------------------|--|--|
| Case                         | Soil<br>temperature Soil moisture |         | Sensible heat flux | Latent heat flux |  |  |
| soil temperature observation | 21.99%                            | -41.87% | 11.13%             | -46.08%          |  |  |
| Soil moisture observation    | -0. 46%                           | 10.85%  | 1.15%              | 1.29%            |  |  |

Test experiments by CoLM demonstrate that: the model error will transfer to another state variables when only one state is optimized by using single-element observation

#### 2. Parameter optimization using multi-element observation





# **International Collaborations**



Form a global water cycle consolidation



### Water Cycle Observation Mission (WCOM) Summary



Demand and feasibility analysis for the sensors



Science and measurements current drawbacks