

GABLS-4 : GEWEX Atmospheric Boundary Layer Study

SCM/LSM and LES intercomparison at DomeC (Antarctic Plateau)

E. Bazile (1), F. Couvreux(1), P. Le Moigne(1), C. Genthon (2),

O. Traullé(1*), W. Maurel(1), H. Barral(3), G. Canut(1), A.A.M. Holtslag(4), G. Svensson(5)

(1) Météo-France, CNRM/GAME, Toulouse, France (eric.bazile_at_meteo.fr)

(2) LGGE UMR 5183, Grenoble 38401 France

(1*) Météo-France, DSO, Toulouse, France

(3) LTHE/CNRS, Grenoble, 38401 France

(4) Meteorology and Air Quality Section, Wageningen University, the Netherlands,

(5) Department of Meteorology and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm

http://www.umr-cnrm.fr/aladin/meshtml/GABLS4/GABLS4.html

GABLS4: "DICE-over-ice"

Project started in 2015 to *study the*

interactions between the ice/snowsurface & atmospheric boundary layer under conditions of strong stability Leads: E. Bazile, F. Couvreux, P. Le Moigne (Météo-France)

- Joint activity between GLASS and GASS.
- Several models/centers participating.
- Follow-on to earlier GABLS studies with focus on very stable conditions, and a surface with low conductivity and high cooling potential over snow/ glacier, and following the earlier DICE experimental design, as well as including LES studies.

•Initial results presented at GABLS4-DICE Workshop, 20-22 May 2015, Météo-France.

Dome C - Antarctica (Southern Great Plains, USA)

http://www.cnrm.meteo.fr/aladin/meshtml/GABLS4/GABLS4.html

GABLS4: Case setup

- Stage 0: LSM (snow scheme) driven by observations for 15 days
- Stage 1: SCM with all the physics and surface interaction: 36h forecast starting the 11th Dec 2009
- **Stage 2:** LES and SCM, stage1 atmospheric forcing but the surface temperature is prescribed.
- Stage 3: LES and SCM. "ideal GABLS4" or simplified: no radiation, no specific humidity, constant geostrophic wind, no advection, Ts prescribed.
- Can we use stage3 with the LES results to understand $_{\Delta}$ the SCM deficiencies in stage2 and 1 ?

- 16 SCM participants
- 9 LES participants
- 7 LSM participants

GABLS4: Preliminary results

- The different sets of forcing of the SCM has been run to understand the model variability
- The more idealized SCM simulations show more consistency with tower observations than running with model specific surface properties (e.g. surface roughness and albedo)
- LES results show relative good agreement during convective conditions and large differences during night that likely are related to the subgrid scale schemes

Larcform 1:

The first Lagrangian Arctic air formation experiment

Motivation:

Climate models have large biases in surface fluxes and representing the inversions

Involves a suit of parametrisations and their interactions

Overview:

This idealized case examines how the airmass is transformed when warm and moist air is advected in over seaice

Larcform 1:

The first Lagrangian Arctic air formation experiment

@AGU PUBLICATIONS

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE

10.1002/2016MS000630

Key Points:

- A Lagrangian-style single column model experiment can reproduce Arctic air mass formation
- Model deficiencies are caused by mixed-phase microphysics, process interaction, and surface representation
- Lagrangian, i.e., air mass-following observations would allow for a tighter constraint on model behavior,

Correspondence to: F. Pithan, felix.pithan@awi.de

Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

Felix Pithan¹, Andrew Ackerman², Wayne M. Angevine³, Kerstin Hartung⁴, Luisa Ickes⁵, Maxwell Kelley², Brian Medeiros⁶, Irina Sandu⁷, Gert-Jan Steeneveld⁸, H. A. M. Sterk⁸, Gunilla Svensson⁴, Paul A. Vaillancourt⁹, and Ayrton Zadra⁹

¹Department of Meteorology, University of Reading, Reading, UK, ²NASA Goddard Institute for Space Studies, New York, New York, USA, ³CIRES, University of Colorado, and NOAA Earth System Research Laboratory, Boulder, Colorado, USA, ⁴Department of Meteorology, Stockholm University, Stockholm, Sweden, ⁵Institute for Atmosphere and Climate, ETHZ, Zurich, Switzerland, ⁶NCAR, Boulder, Colorado, USA, ⁷ECMWF, Reading, UK, ⁸Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands, ⁹Recherche en Prévision Numérique Atmosphérique, Environment Canada, Dorval, Quebec, Canada

Planned activities during 2017

- 1-day GABLS 4 LES workshop in Delft, Netherlands, in the international workshop on "Turbulence in Stably Stratified planetary boundary layers", March 27th – 31st, 2017
- Write-up of SCM and LES results for GABLS4
- Workshop GALBS and WWRP PPP YOPP to discuss continuation of Larcform and other possible SCM & LES studies to aid model development in polar regions

BACKGROUND: Diurnal land/atmosphere coupling experiment (DICE-1)

Project started April 2013 to *study*

the interactions between the landsurface & atmospheric boundary layer •Leads: Adrian Lock, Martin Best (UKMO). •Joint activity between GLASS (land-surface modellers) and GASS (atmospheric boundary-layer modellers).

•12 models participating.

•Follow-on to GABLS-2, where landatmosphere coupling was identified as a important mechanism.

Workshops:

•1st: 14-16 Oct 2013, UK Met Office.
•2nd: 14-18 Jul 2014, GEWEX conf./Neth.
•3rd: 20-22 May 2015, Météo-France.

Manuscript in preparation (for JHM).

CASES-99 Experiment (Southern Great Plains, USA)

http://appconv.metoffice.com/dice/dice.html

DICE-GABLS: Participants/Institutes/Contributions

Model	Contact scientist	Institute	Stages submitted	Levels	Sensitivity tests
Arome	Eric Bazille	Meteo France	All	60/70	resolution
Arpege	Eric Bazille	Meteo France	All	60/70	resolution
ECEARTH	Reinder Ronda	Wageningen	SCM only	91	LAI
GDPS3.0	Ayrton Zadra	СМС	All	79	
GFDL	Sergey Malyshev	Princeton	All	24	
GISS_E2	Ann Fridlind, Andy Ackerman	GISS	All	40	
IFS/HTESSEL	Irina Sandu, Gianpaolo Balsamo	ECMWF	All	137	LAI
MESO_NH	Maria Jimenez	UIB	All	85	Bare soil
UM/JULES	Adrian Lock, Martin Best	Met Office	All	70	Vegetation
WRF-NOAH	Weiguo Wang	NUIST	All	60	Lots!
WRF	Wayne Angevine	NOAA	?	119	PBL scheme
CAM5, CLM4	David Lawrence	NCAR	1a, 1b	?	
РВСМ	Pierre Gentine	Columbia	Not yet		

DICE Experimental Design

Objective: Assess impact of land-atmosphere feedbacks. Stage 1: stand alone land, and single column model (SCM) alone. Stage 2: Coupled land-Single Column Model (SCM). Stage 3: Sensitivity of LSMs and SCMs to variations in forcing.

<u>**Data Set:</u>** CASES-99 field experiment in Kansas, 23-26 Oct 1999 using 2.5 days and 3 nights with intermittent turbulence (night one), continuous (two), radiatively-driven/no turbulence (three).</u>

Martin Best and Adrian Lock (UKMO) et al.

DICE Status/Summary

- 12 pages and 80 figures of results for stages 1, 2, 3!
- 9-year spin-up for LSMs.
- SCM: no relaxation of time-varying geostrophic wind (uniform with height); subsidence of T,q; horizontal advection of T,q,wind; radiation switched on in all simulations.
- Stage 1a (LSM): LHF generally far too large (LSMs didn't account for dead grass, adversely affecting bowen ratio); SHF and stress too large at night; 55m forcing too high for LSMs (vs 10m) especially for stable nighttime conditions.
- Stage 1b (SCM): Difficulty with wind profiles, particularly 1st night (intermittent turbulence); large differences in daytime parameterized entrainment; potential inaccuracy of (prescribed) large-scale forcing; SCM generally can be forced by observed fluxes and stresses.

DICE Status/Summary (page 2)

- <u>Stage 2 (LSM+SCM)</u>: excessive drag from LSMs generate deeper/less stratified SBLs; soil-surface coupling sensitivity at night; daytime PBL differences dominated by LSM surface fluxes, with RH dominated by SHF; more spread in PBL moisture; daytime PBL temperature evolution a "slave" to surface fluxes with PBL moisture more complicated.
- <u>Stage 3a (LSM ensemble spread due to PBL variability forcing)</u>: largest variation in SHF during day & at night for more continuous turbulence.
- <u>Stage 3b</u> (PBL ensemble spread due to LSM variability forcing): day-time PBL: T, q dominated by sfc fluxes with variability between different SCMs similar, but sensitivity of inversion height very different.
- Summary: surface momentum flux and momentum profiles should be examined by DICE community; large errors in evaporation may dominate signal and the impact of coupling; further examine nocturnal fluxes and boundary layers and soil-surface coupling sensitivity.
- Repeat for many other sites (DICEs), e.g. GABLS project for Antarctica: GABLS4 or "DICE-over-ICE" (next page).
- Differences in different models' (LSM+SCM) sensitivity to changes in forcing are likely important in GCMs; needs to be better understood.

Possible Future DICE efforts: Field Programs for Model Physics Development, Surface-Atmosphere Interaction (land, ice, even ocean)

