

World Climate Research Programme's Grand Challenge in Weather and Climate Extremes

Sonia I. Seneviratne¹, L. Alexander², G. Hegerl³, and X. Zhang⁴

¹ETH Zurich, Switzerland; ²UNSW, Sydney, Australia; ³U. Edinburgh, UK; ⁴Environment Canada, Toronto, Canada

Current Status

- Implementation plan Feb. 2015
 - 4 main extremes, 4 overarching themes
- Early successes
 - WCRP Summer School on Climate Extremes (Trieste, July 2014) and associated special issue
 - Workshop on GC-Extremes data requirements (Sydney, February 2015)
 - Workshop on Understanding, modeling and predicting weather and climate extremes (Oslo, October 2015)
 - Blocking workshop (with SPARC, Reading, April 2016)
 - Event attribution workshop (Banff, June 2016)
 - Workshop on Compound extremes (Zurich, April 2017)
 - Currently working on high-impact overview paper

WCRP grand challenge on weather and climate extremes

- *service perspective*: What are frequency and magnitudes of various impact-causing extremes in the near and long term?
- *science perspective*: causes and mechanisms of variability and change in extremes, how to improve the prediction of change
- Implementation needs to be focused: areas with opportunity for rapid progress

4 main extremes, 4 over arching themes

Leads

Lisa Alexander

Ali Behrangi

Xuebin Zhang Fredi Otto

CSU

Robert

Vautard

Document

Observations crucial for understanding change and evaluating models, but critical gaps exist in the amount, quality, consistency and availability, especially for extremes

years < 5

Sub-daily precip stations (HadISD) and SDII coverage (HadEX2)

Source: Westra et al. 2014, Rev. Geophys.

- Permanent destruction of old records
- More data undigitised than digitised (especially pre WWII)
- Many institutions unwilling or unable to exchange data
- Data quality and homogeneity
- Also considers runoff observations

The dreary state of precipitation observations

IPCC assessments – data improvements?

Trend 1951 - 2003 contribution from very wet days

No improvement in coverage between IPCC Assessments

www.climdex.org

Understand

atmosphere

greenhouse gases

oceans

land

Interaction between large-scale phenomena (weather types, modes of variability) and regional-scale land-atmosphere feedbacks or forcing is critical

Understanding: Global scale vs regional scale drivers, role of land-atmosphere interactions

Understanding: Global scale vs regional scale drivers, role of land-atmosphere interactions

Soil moisture set to present-day conditions Source: Vogel et al., GRL, in press

Understanding: Global scale vs regional scale drivers, role of land-atmosphere interactions

Analysis of observed robust drying trends (from 1948-1968 to 1985-2005): No support for "dry gets drier, wet gets wetter" paradigm

Source: Greve et al. 2014, Nature Geoscience

Land moisture sources strong contributor to 2010 Pakistan flood-inducing rainfall events

Source: Martius et al. 2013, QJRMS

Simulate

Do the models simulate extreme events for the right reason?

How to use both statistical methods for tails and knowledge about mechanisms/ storylines?

What phenomena are GCM and RCM simulations credible for and how can simulations be improved?

Source: Kendon et al. 2014, Nature Climate Change

Source: Krueger et al. 2015, ERL

Simulating Extremes

- Different issues between small-scale short-lived extremes (heavy precipitation, wind storms) and large-scale long-lived extremes (heatwaves, droughts)
- High-resolution more critical for first kind of extremes
- Land processes strong constraint for 2nd kind of extremes

Attribute

A key challenge is to understand the extent to which humans are responsible for changes in extremes and the likelihood of individual extreme weather events

Attribute

Estimate changing risk due to human influence, e.g:

Human influence on 2014 southern England winter floods

Source: Schaller et al. 2016, Nature Climate Change

Activities

Early successes

2014 WCRP summer school (Trieste, Italy) & journal special issue

2015 Workshop on data requirements (Sydney, Australia)

2015 Workshop on understanding & simulating extremes (Oslo, Norway)

2016

- Blocking workshop (UK, with SPARC)
- Data Rescue workshop, Ireland
- High-impact weather, USA (with WWRP)
- 13th International Meeting on Statistical Climatology and Statistics and D&A meeting, Canada
- Banff workshop (statistical aspects of extremes)

2017-2018

- Workshop on compound extremes, Switzerland (April 2017)
- Perspective paper in progress by grand challenge team
- 2018 OSC on Climate Extremes and Water Availability

WCRP Open Science Conference on Climate extremes and Water availability, 2018

- Co-sponsored by Extremes GC, Water availability GC and GEWEX
- A milestone for the climate research community to report their progress
- Major input for the 6th Assessment
- Target date for major results from on-going activities (publications)

GC extremes and 3 out-of-the-box science questions

- The GC extremes has a high relevance to all three questions
- "How does weather change with climate": Weather we care about is extreme weather, this is the core of the GC
- "How does climate influence habitability": Habitability is strongly affected by changes in climate extremes (heatwaves, droughts, storms, floods), also core topic
- "Where does the carbon go?": Climate extremes affect carbon uptake, in particular related to potential changes in drought occurrence in vegetated regions (e.g. Amazon)

