

Stratosphere-Troposphere Processes and their Role in Climate

An overview of SPARC activities and plans Judith Perlwitz

GEWEX SSG meeting

27 January 2020

SPARC leadership

B

Neil Harris, co-chair

Centre for Environment and Agricultural Informatics, Cranfield university Cranfield, UK

Gufran Beig Indian Institute of Tropical Meteorology, Pune India

Harry Hendon Bureau of Meteorology, Melbourne, Australia

Karen Rosenlof NOAA/ESRL, Boulder, CO, USA

Donald J. Wuebbles University of Illinois, Urbana, IL, USA

Judith Perlwitz, co-chair ESRL, NOAA Boulder, CO, USA

Wen Chen Center for Monsoon System Research 1 IAP, Chinese Academy of Sciences, Beijing, China

Takeshi Horinouchi Grad. School of Environmental Science, Hokkaido University

Nathaniel Livesey NASA-JPL, Pasadena, CA, USA

Tel Aviv University,

Tel Aviv, Israel

Nili Harnik

Seok-Woo Son, co-chair

Seoul National University,

Seoul, Republic of Korea

Kaoru Sato Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Tianjun Zhou LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Max Planck Institute for Meteorology in Hamburg, Germany

SPARC has three main science themes:

• Atmospheric Dynamics & Predictability

• Chemistry & Climate

• Long-term records for Climate Understanding

SPARC structure

SPARC is organized in a bottom-up approach:

currently 18 activities (two ending this year), proposed by community

- self-organized
- provide network opportunities centered on topical research
- held activity and cross-activity workshops
- Limited life-time; only extended, if new science questions arise
- Highly productive:
 - community papers,
 - reports published by SPARC
 - Major contributions to IPCC and to UNEP/WMO Ozone Assessments, CMIP (forcing data sets, MIPs)

SPARC capacity building

SPARC capacity building:

- involving ECR in activity leadership
- organization of training schools
- travel support opportunities for ECR

3rd ACAM training school, Kuala Lumpur, June 2019 (in collaboration with IGAC)

CCMI Summer School 'Earth System Modelling and Observations to Study Earth in a Changing Climate' Hong Kong, August 2019

SPARC activity details

Data records, analysis & evaluation

SPARC activities with focus on data records, analysis & evaluation

- ACAM international research campaigns, such as StratoClim
- ATC assessing causes, trends and variability of atmospheric temperature records
- DynVar analysis of model and observational data to understand atmospheric variability
- FISAPS assessment of observations & model data to improve understanding of fine-scale processes; improvement of availability of high-resolution observations (HVRRD)
- GW analysis and process understanding of GW generation in observations and models
- LOTUS assessment of uncertainties and trends in long-term records of ozone
- OCTAV-UTLS atmospheric composition: assessment of data quality and comparability; data evaluation focussed on the UT/LS
- PSC analyse PSC data sets to synthesize PSC climatology
- QBOi analysis of QBO variability
- SATIO-TCS understanding of the stratosphere-troposphere dynamical coupling in the tropics with focus on convection
- SOLARIS-HEPPA clarifies the effects of solar influence on climate
- SSiRC encourages and supporting new instrumentation and measurements of sulfur-containing compounds, such as COS, DMS, and non-volcanic SO2 in the UTLS globally
- TUNER assessing completeness and consistence of, as well as providing information on uncertainties of satellite data sets
- WAVAS II data quality assessment for water vapour data; evaluation of impacts of changing UTLS water vapour

SPARC activity details

SPARC activities with focus on model development

- ACAM monsoon representation in models
- CCMI coordination of inter-model comparisons & analysis with focus on chemistryclimate interaction
- DynVar promotes development & use of coupled atmosphere-ocean-sea-ice general circulation models; contributions to CMIP
- GW improvement of parameterization and representation of gravity waves in models
- PSC improves PSC characteristics for global models
- QBOi provides a 'recipe book' for simulating a reliable QBO; contribute to CMIP
- SNAP assess forecasting skills through organised intercomparison of stratospheric forecasts and impact of tropospheric predictive skill (S2S)
- S-RIP provides guidance on appropriate usage of various reanalysis products, and provide basis for improvement
- SOLARIS-HEPPA recommendations for the solar irradiance and solar proton flux data used to drive middle atmosphere and climate models
- SSiRC initiates new model/data intercomparisons

SPARC activity details

SPARC activities with focus on networking:

- ACAM building international collaborations within monsoon research
- Data Assimilation connecting experts from measurement, modelling and user communities through workshops
- DynVar promoting connections to ocean & sea ice communities (coupled circulation models)
- S-RIP activity is an example in connecting base research communities with operative centres and agencies around the globe.
- SOLARIS-HEPPA bringing together scientists involved in atmospheric modelling and scientists involved in the analysis and generation of satellite data
- SSiRC providing a coordinated structure for the various individual activities already underway in different research centres

recent SPARC achievements

International Science Council

- Two successful summer school (ACAM & CCMi)
- Reanalysis Intercomparison report: Full report submitted; currently in review. (S-RIP)
- Research activity on New Quantitative Constraints on Orographic Gravity Wave Stress and Drag supported by International Space Science Institute (ISSI)

Gravity Wave analysis: High-resolution model (OSSE) validation – detailed comparisons to observations.

recent SPARC achievements

- Two community papers published on the predictability of the stratosphere and strat.-trop. coupling on S2S timescales (SNAP)
 - The role of the stratosphere in subseasonal to seasonal prediction.
 Part I: Predictability of the stratosphere
 - The role of the stratosphere in subseasonal to seasonal prediction
 Part II: Predictability arising from stratosphere - troposphere coupling

International Science Council

SNAP analysis:

The average across all events of the percentage of ensemble members as a function of lead time [days] that detect the event within ± 3 days of the observed event. Patterned black bars give the "false alarm rate" (events that were predicted but not detected at the given lead times).

recent SPARC achievements

- Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) SPARC report published
- SSiRC has initiated a new activity to develop an index for rapidly relating the climate significance of a volcanic eruption
 - developed a wiki page (182 members) as an interactive way to communicate (observationalists and modelers) when a volcanic eruption happens \rightarrow e.g. Mt Agung, Ambae, and **Raikoke eruptions**
 - initiated a rapid responsive modeling activity that indicated that the Raikoke eruption in June 2019 would not have a significant climate impact.
- Screened WAVAS-II satellite data sets in homogenized format (quantity, vertical gridding) has been made publicly available on data server, and a DOI has been received. The WAVAS special issue in ACP/ will remain open until mid-2020.

International Science Council

SPARC/IO3C/GAW Report on Long-term Ozone Trends and

SPARC

International Ozone

Need to map onto WCRP's SP/IP – using SPARC's bottom-up strengths, making sure that every new activity maps on WCRP's goals during WRCP transition

SPARC is strongly supportive of maintaining an atmospheric community within WCRP which includes dynamics, composition and long-term changes.

(Could be called SPARC – or not)

That community will support and/or lead initiatives of broader interest involving WCRP and non-WCRP groups

SSG Meeting discussion (December, 2019):

Overarching Science Questions? Mapping SPARC related science questions?

- How and why is atmospheric composition changing over time and what are the impacts
 - How do changes in atmospheric composition affect RF over time? (i.e. *Concentration, lifetimes, radiative forcing, metrics*)
 - How will varying spatial concentration and forcings impact regional weather and climate? (*i.e. ozone recovery, fires, pollution, land/sea emissions*)
 - What are the processes driving atmospheric composition change? (i.e., Dynamics, emissions, loss processes)
 - How will monsoons modify concentrations and transport of pollutants to the UTLS?
 - How will the stratosphere influence monsoons as climate changes? (droughts, floods and food security)
 - What are the impacts of proposed (atmospheric) geoengineering approaches? (Solar Radiation Management effects on the broader atmosphere including stratospheric O3)

SPARC future plans

International WC

Activity plans in the near future:

- Publication of the SPARC Reanalysis Intercomparison Project (S-RIP)
 - currently in review; aiming for publishing date in 2020.
- Preparation of the 5th ACAM workshop and 4th ACAM training school in 2021
- Increased focus on the troposphere and extremes (DynVar planning of a workshop in 2022 to bring together the stratosphere and extremes communities)
- Future joint workshop of the Gravity Wave activity with Pan-GASS on Surface Drag Momentum Transport; next GW Symposium: 2021
 - Continuing fundamental work on gravity wave generation, propagation, dissipation, breaking

SPARC future plans

international Science Council

Activity plans in the near future:

- Research on transport barriers and Strat-Trop exchange, mixing processes across dynamical barriers, and climate impacts on long.-term changes in the UTLS (OCTAV-UTLS; main focus on Ozone)
- Stratospheric and Tropospheric Influences on Tropical Convective Systems (SATIO-TCS): New full SPARC activity, focussing on process understanding.
 - Workshop: 21-25 February in Kyoto, Japan
- Continuation of VolRes activities (wiki) and research on effect of variability in strat. aerosol on temperature & precipitation (SSiRC)

The Core Project joint Initiative

- Proposed by the chairs of CLIVAR, GEWEX, SPARC, CliC and CORDEX at JSC 40 (May 2019)
- Goal: regional, cross-cutting and research activities among all CPs
- Criteria: (i) fundamental science, (ii) global climate and social relevance, (iii) tractable
- Regions and societal relevance:
 - Himalayas (Third Pole): Key contribution to water availability in that region
 - Andes (ANDEX): Impact of climate change on water supply and thus on local services
 - Arctic (Greenland ice sheet): Key contribution to sea level rise