Earth's System Approach to Climate, Weather and Environment

Professor Pavel Kabat

WMO Chief Scientist and Director Research (including WCRP, WWRP, GAW, ...)

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

UN World Conference on Disaster Risk Reduction 2015 Sendai Japan

2015: A Landmark Year

- Over 190 countries signed up to reduce emissions, with the target to stay within a 2°C world.
- 15-year agreement for the substantial reduction of disaster risk and losses in lives, livelihoods and health.
- 2030 agenda with 17 goals to end poverty and hunger, improve health and education, making cities more sustainable, combating climate change, and protecting oceans and forests.

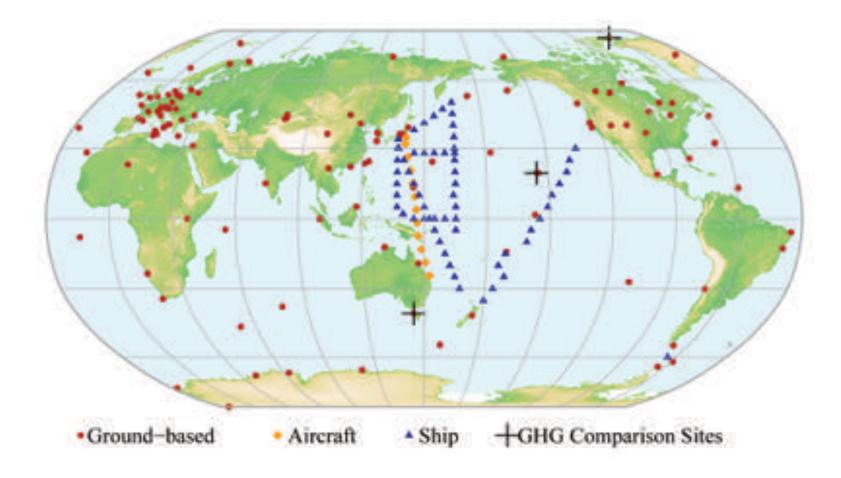
Understanding and Quantifying Weather and Climate Risk are at the Core of these Actions

A little preamble....

Where do we stand today ?

Yesterday @ WMO...

WMO State of the 2018 Climate report paints 2018 as a devastating, record-breaking year....


WMO GREENHOUSE GAS BULLETIN NOVEMBER 2018

	CO ₂	CH4	N ₂ O
Global abundance in 2017	405.5 ± 0.1 ppm	1 859 ± 2 ppb	329.9 ± 0.1 ppb
2017 abundance relative to year 1750 [*]	146%	257%	122%
2016-17 absolute increase	2.2 ppm	7 ppb	0.9 ppb
2016-17 relative increase	0.55%	0.38%	0.27%
Mean annual absolute increase of last 10 years	2.24 ppm yr ⁻¹	6.9 ppb yr ⁻¹	0.93 ppb yr ⁻¹

The number of stations used for the analyses is 129 for CO_2 , 126 for CH_4 and 96 for N_2O . Assuming a pre-industrial mole fraction of 278 ppm for CO_2 , 722 ppb for CH_4 and 270 ppb for N_2O .

Greenhouse gas observations WMO Global Atmosphere Watch (GAW)

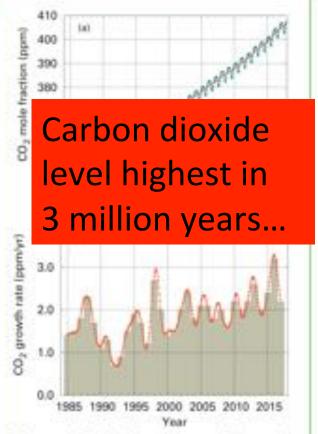


Figure 4. Globally averaged CO₂ mole fraction (a) and its growth rate (b) from 1984 to 2017. Increases in successive annual means are shown as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; the blue dots and line depict the monthly averages. Observations from 129 stations have been used for this analysis.

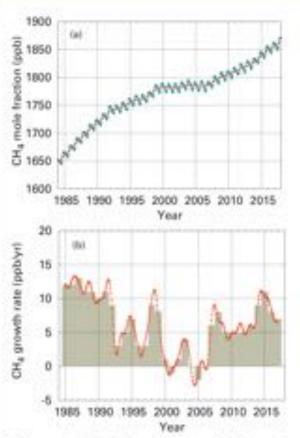


Figure 5. Globally averaged CH₄ mole fraction (a) and its growth rate (b) from 1984 to 2017. Increases in successive annual means are shown as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; the blue dots and line depict the monthly averages. Observations from 126 stations have been used for this analysis.

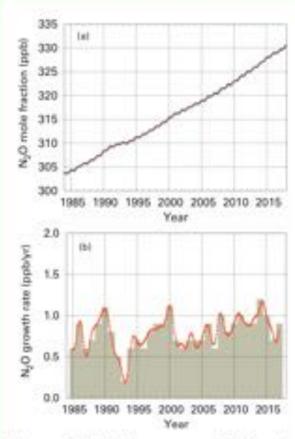
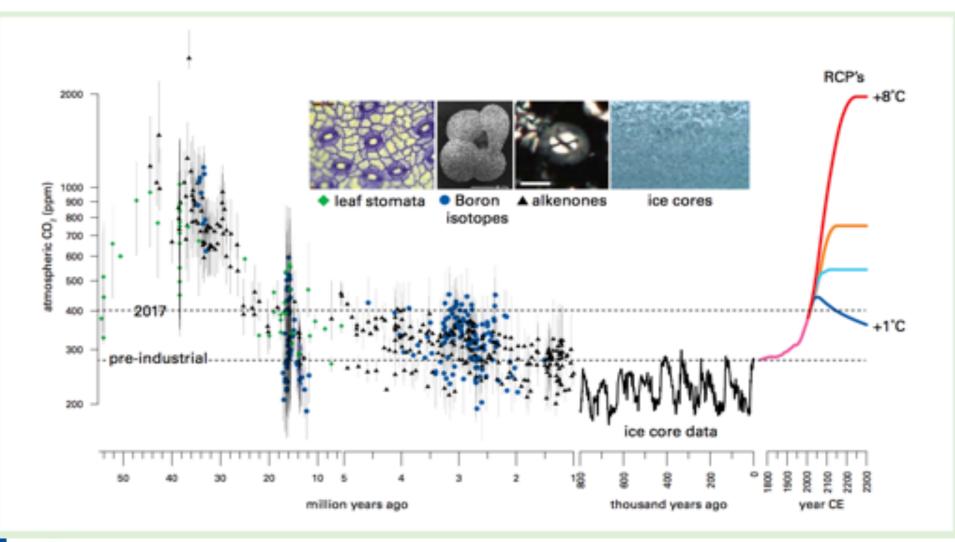
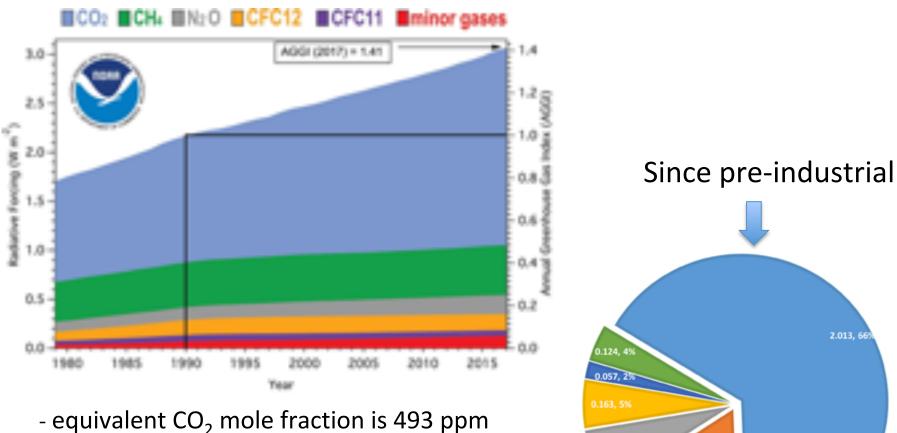



Figure 6. Globally averaged N₂O mole fraction (a) and its growth rate (b) from 1984 to 2017. Increases in successive annual means are shown as the shaded columns in (b). The red line in (a) is the monthly mean with the seasonal variation removed; in this plot it is overlapping with the blue dots and line that depict the monthly averages. Observations from 96 stations have been used for this analysis.

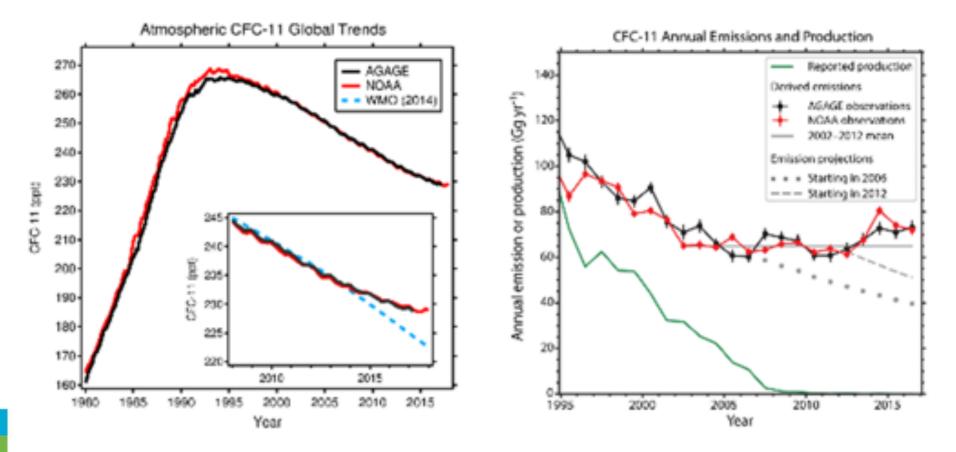


Reconstruction of atmospheric CO2

(wmo омм

Radiative forcing

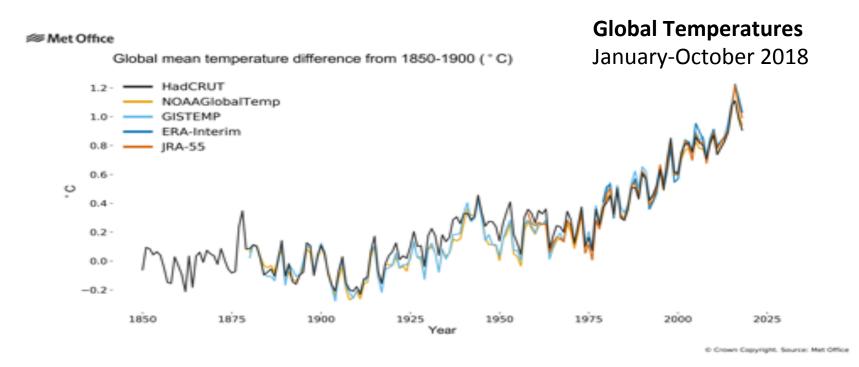
0.195, 6%


0.509, 17%

CO2 ■ CH4 ■ N20 ■ CFC12 ■ CFC11 ■ 15-minor

- CO_2 contributes 82% to the increase in RF within last 5 years

Atmospheric "discoveries"

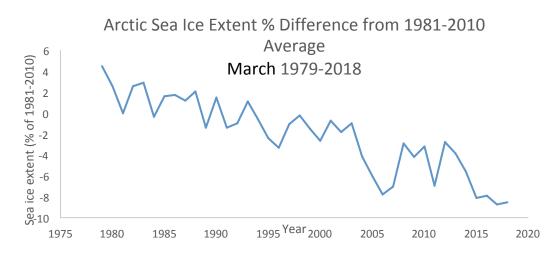


New emissions of CFC-11 from East Asia

WMO State of Climate 2018

(pre-release yesterday in Geneva)

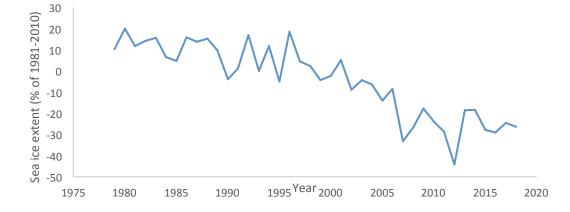
- 2018 0.98±0.12 C above pre-industrial (1850-1900), 2018 set to be 4th warmest year on record
- . 2015 and 2016 were affected by strong El Nino2015, 2016, 2017 and 2018 are the 4 warmest
 v
 e
 a
 r
 s
 o
 n
 r
 e
 c
 o
 r
 d


In contrast to the two warmest years, 2018 began with weak La Niña conditions, typically a s s o c i a t e d w i t h l o w e r g l o b a l t e m p e r a t u r e s.
 By October, sea-surface temperatures in the eastern Tropical Pacific were showing signs of a return

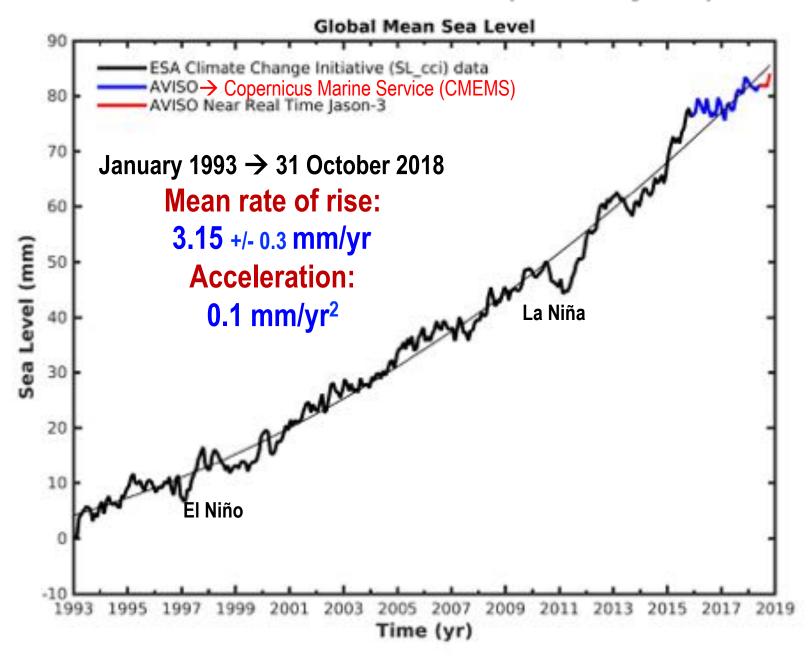
E Niño conditions. If El Niño develops, 2019 is likely to be warmer than 2018.

Arctic Sea Ice in 2018

March


14.48 million square kilometres, approximately 7% below the 1981-2010 average (15.64 million square kilometres), the 3rd lowest on record

Arctic Sea Ice Extent % Difference from 1981-2010 Average September 1979-2018


September

4.62 million square
kilometres, approximately
28% below average (6.40
million square kilometres),
the 6th smallest September
extent on record.

Global Mean Sea Level (Altimetry Era)

Global Mean Sea Level Rise

1993-2018 → 3.15 +/- 0.1 mm/yr 1993-2017 → 3.1 +/- 0.1 mm/yr

2014-2018 → 4.5 +/- 0.3 mm/yr 2014-2017 → 5.1 +/- 0.3 mm/yr

(formal error, 1 standard deviation)

Ocean acidification

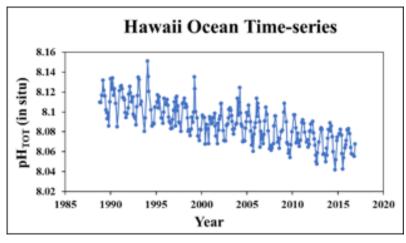
8.14

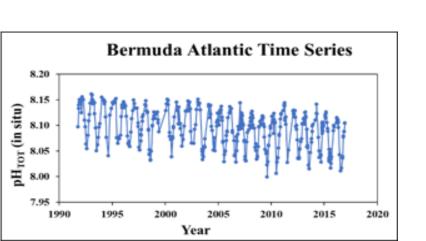
8.12

pH_{TOT} (in situ) 8'08 8'09 8'04

8.02

1994


1996


1998

2000

2002

Year

MO OMM

Open-ocean sources over the last 30 years have shown a clear trend of decreasing pH.

European Station for Time-series

in the Ocean Canary Islands

2004

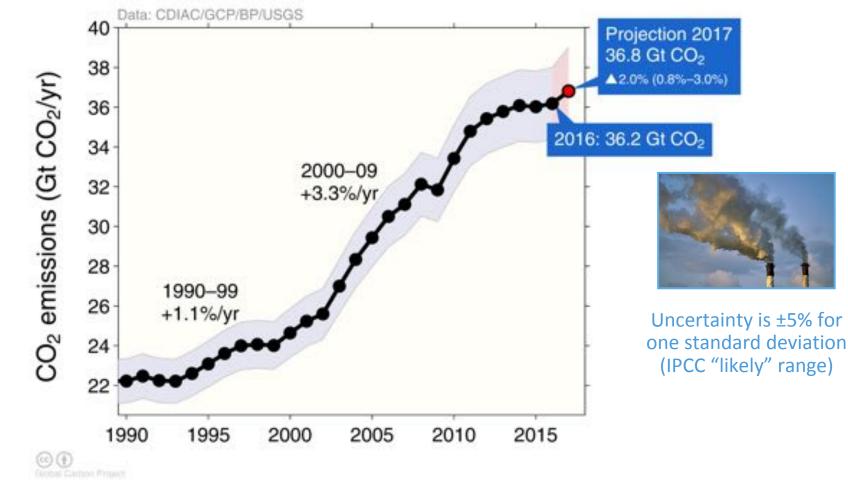
2006

2010

2012

2008

Credit: Richard Feely (NOAA- PMEL) and Marine Lebrec (IAEA OA-ICC)

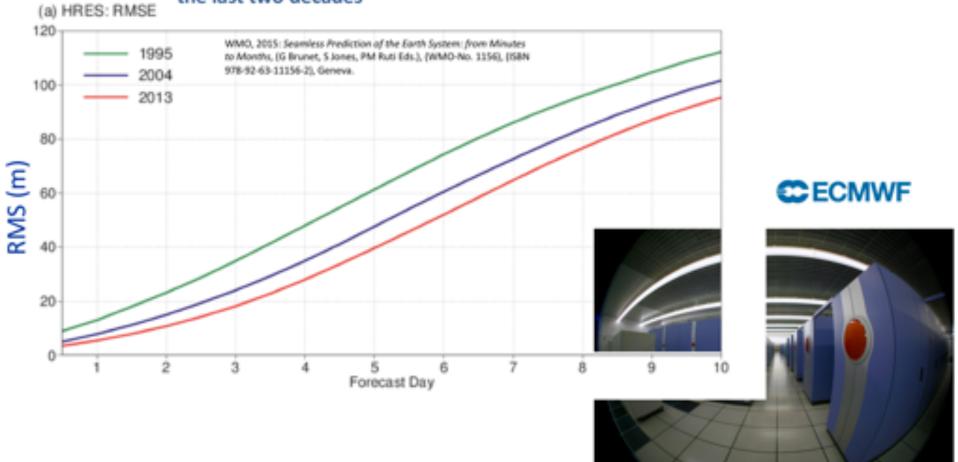

Emissions from fossil fuel use and industry

Global emissions from fossil fuel and industry: 36.2 ± 2 GtCO₂ in 2016, 62% over 1990

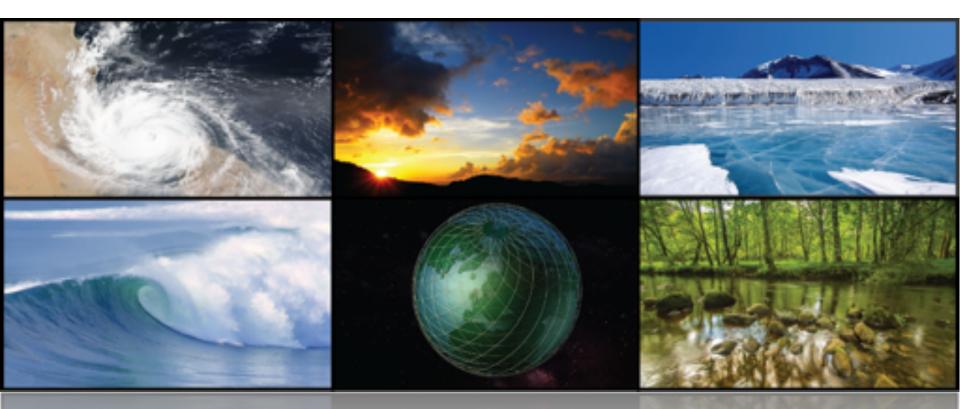
• Projection for 2017: 36.8 ± 2 GtCO₂, 2.0% higher than 2016

GLOBAL

CARBON


WHO MAN 2015 and 2016 are preliminary. Growth rate is adjusted for the leap year in 2016. Source: <u>CDIAC</u>; <u>Le Quéré et al 2017</u>; <u>Global Carbon Budget 2017</u>

Climate and Weather Research Historical background


1950	63	1967	1970 1974	1985	1985	1998	2004	2013	201	4 2015
of the Nation meteo	lized a Unite s for rolog d We	Researd establis Meteor agency	Global Atmospheric ch Programme) shed by WMO (World cological Organization) Conduct of GARP Regional GATE:GARPAtlanticTropic MONEX:MonsoonExperim ALPEX:AlpineExperiment AMEX:AirMassTransforma WCRP, Worl Research Pro (WMO, ICSU	G Experim alExperim alExperim ationExperiment d Clima ogrami	kperiment nents: nent eriment ate me 1 st V	Numerica Itation WWRP Researc MAP & World W	THORPE System a Predicta Experim (Worle ch Prog Sidney	Polar Pi Projects X (Obser and bility ent) d Weat gramm y2000 Researc	redic s ving cher e).	High Impact Weather Project
w (MO	OMM		*	SCIE	ence Con	ierence	e, Canac	bL	

Improving the skill – big resources

ECMWF's forecast Z500hPa extra-tropical error growth over the last two decades

WORLD CLIMATE RESEARCH PROGRAMME WCRP

The Future of WCRP....

Terms of Reference for WCRP Review

- To ascertain the effectiveness of WCRP in delivering its mandate to determine:
 - To what extent climate can be predicted;
 - The extent of man's influence on climate.
- To assess how well it partners with other organisations.
- To advise on the future structure, governance and resourcing of the programme.

Overarching Conclusions of the Review Panel

- WCRP is at a critical point in its history, and significant changes are required in its governance, structure and delivery for it to fulfil its mission in the context of 21st century challenges.
- Without a strong foundation in climate science and prediction, none of these challenges can be addressed in a robust, cost-effective and durable way.
- Since its inception, the key strength of WCRP has been its focus on cutting-edge physical climate science where international coordination enables scientific advances that would not happen otherwise. This must continue to be its focus; that means prioritising what it does and recognising where its unique role as a facilitator and integrator of climate research makes a difference.
- WCRP needs to articulate and demonstrate its core values more effectively, along with the societal relevance of its work. It is **not the role of WCRP to deliver the end products and services**, but it should provide the bedrock knowledge on which these can be developed.

Recommendation 5: Structure

The JSC, in consultation with the newly created Governing Board, should work with the science community to establish a new structure for the WCRP research effort that best serves its new strategy and involves a simplified set of delivery mechanisms.

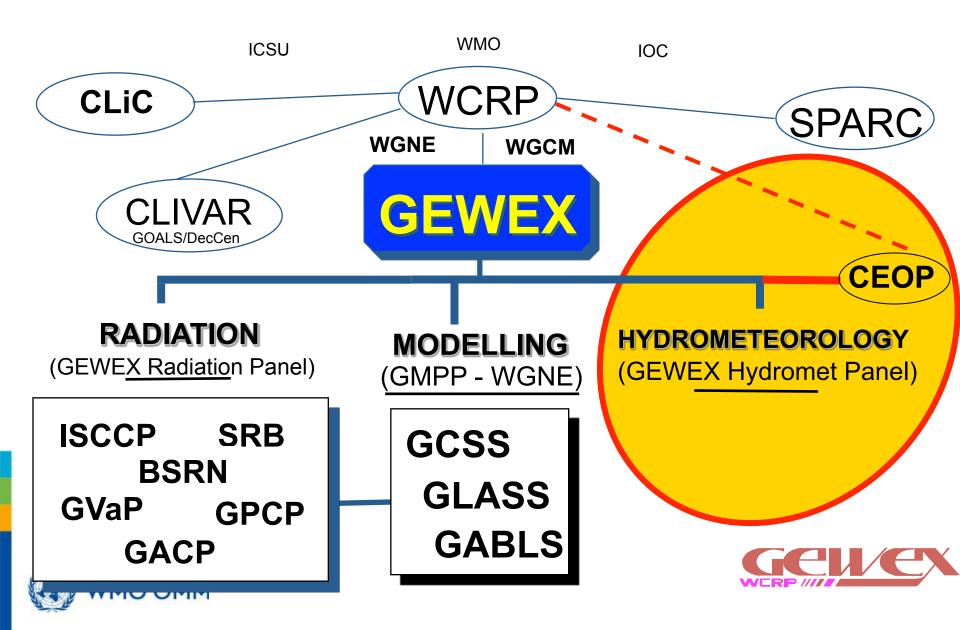
CURRENT WCRP STRUCTURE

Unwieldy, complex and confusing.

Core Projects stuck in the past?

Where is whole system approach?

Where is next generation model development?


Where is the pathway to climate services?

Where is climate change?

CURRENT STRUCTURE IS NOT THE STRUCTURE FOR THE FUTURE

Updated GEWEX Science Questions :

1. Are the Earth's Energy Budget and Water Cycle Changing?

Is the Water Cycle Accelerating?

2. How do Processes Contribute to Feedback and Causes of Natural Variability?

3. Can We Predict these Changes on up to S - IA?

4. What are the Impacts of these Changes on Water Resources?

	WCR				
WMO/IOC GLOBAL CLIMATE OBSERVATIONS, ANALYSES &	EARTH SYSTEM PROCESSES ACROSS SCALES Jointly with WWRP	CLIMATE VARIABILITY, PREDICTABILITY & PREDICTION	CLIMATE CHANGE AND EARTH SYSTEM FEEDBACKS Jointly with AIMES	WMO/ISC GLOBAL ATMOSPHERIC	
MONITORING (CCI, GCOS)	WCRP CRO (on occasio	COMPOSITION GHG Monitoring; Air Quality Prediction; Atmospheric Chemistry Processes & Modelling			
		Modelling (GAW,			
	WCRP WORKING GROUP ON CLIMATE INFORMATION FOR REGIONS linking with Future Earth			SPARC,IGAC)	

CLIMATE CHANGE ASSESSMENTS AND CLIMATE SERVICES (UNFCCCC, IPCC, GFCS, Copernicus, VIACS,)

WCRP CAPABILITY THEMES

EARTH SYSTEM PROCESSES ACROSS SCALES Jointly with WWRP

Energy, Water & Carbon Cycles; Fundamental Atmospheric Physics (e.g. Convection); Land Surface Processes & Land-Atmosphere Coupling; Ocean Processes & Ocean-Atmosphere Coupling; Cryosphere Processes

CLIMATE VARIABILITY, PREDICTABILITY & PREDICTION Jointly with WWRP S2S

Ocean, Land, Cryosphere, Atmosphere & Solar Drivers; Climate Dynamics, Modes of Variability & Teleconnections; Monthly to Decadal Predictability & Prediction

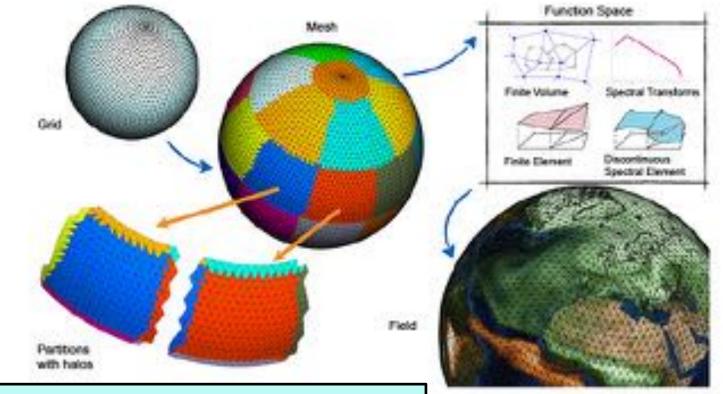
CLIMATE CHANGE AND EARTH SYSTEM FEEDBACKS Jointly with ICSU AIMES

Climate Change Forcing & Sensitivity; Climate Change Attribution; Climate Change Projections (Global & Regional) for Mitigation & Adaptation; Abrupt Climate Change; Geoengineering Assessment

WCRP CAPABILITY THEMES					
EARTH SYSTEM PROCESSES ACROSS SCALES Jointly with WWRP	CLIMATE VARIABILITY, PREDICTABILITY & PREDICTION	CLIMATE CHANGE AND EARTH SYSTEM FEEDBACKS Jointly with AIMES			
Energy, Water & Carbon Cycles; Fundamental Atmospheric Physics (e.g. Convection); Land Surface Processes & Land- Atmosphere Coupling; Ocean Processes & Ocean-Atmosphere Coupling; Cryosphere Processes	Ocean, Land, Cryosphere, Atmosphere & Solar Drivers; Climate Dynamics, Modes of Variability & Teleconnections; Monthly to Decadal Predictability & Prediction	Climate Change Forcing & Sensitivity; Climate Change Attribution; Climate Change Projections (Global & Regional) for Mitigation & Adaptation; Abrupt Climate Change; Geoengineering Assessment			

WCRP CROSS-CUTTING RESEARCH PROJECTS (on occasions with WWRP, Future Earth.....) Examples: Regional Sea Level Rise, Coastal Impacts and Cities, Weather and Climate Extremes, now and in the future Water Cycle and the Food Baskets of the World Fate of the Antarctic and Greenland Icesheets Is the Jet Stream changing its Behaviour? Climate Change and Human Health

WCRP CAPABILITY THEMES					
EARTH SYSTEM PROCESSES ACROSS SCALES Jointly with WWRP	CLIMATE VARIABILITY, PREDICTABILITY & PREDICTION	CLIMATE CHANGE AND EARTH SYSTEM FEEDBACKS Jointly with AIMES			
Energy, Water & Carbon Cycles; Fundamental Atmospheric Physics (e.g. Convection); Land Surface Processes & Land- Atmosphere Coupling; Ocean Processes & Ocean-Atmosphere Coupling; Cryosphere Processes	Ocean, Land, Cryosphere, Atmosphere & Solar Drivers; Climate Dynamics, Modes of Variability & Teleconnections; Monthly to Decadal Predictability & Prediction	Climate Change Forcing & Sensitivity; Climate Change Attribution; Climate Change Projections (Global & Regional) for Mitigation & Adaptation; Abrupt Climate Change; Geoengineering Assessment			


WCRP CROSS-CUTTING RESEARCH PROJECTS (on occasions with WWRP, Future Earth.....)

WCRP WORKING GROUP ON CLIMATE MODEL DEVELOPMENT jointly with WGNE Identifying Systematic Errors; Improving Climate Models & Building Next Generation Earth System Models; Planning for Exascale Computing

Is there a need now to distinguish between science for model development and using models for science?

Next Generation Codes and Exascale Computing

WCRP WORKING GROUP ON CLIMATE MODEL DEVELOPMENT jointly with WGNE Identifying Systematic Errors; Improving Climate Models & Building Next Generation Earth System Models; Planning for Exascale Computing

WCRP CAPABILITY THEMES					
EARTH SYSTEM PROCESSES ACROSS SCALES Jointly with WWRP	CLIMATE VARIABILITY, PREDICTABILITY & PREDICTION	CLIMATE CHANGE AND EARTH SYSTEM FEEDBACKS Jointly with AIMES			
Energy, Water & Carbon Cycles; Fundamental Atmospheric Physics (e.g. Convection); Land Surface Processes & Land- Atmosphere Coupling; Ocean Processes & Ocean-Atmosphere Coupling; Cryosphere Processes	Ocean, Land, Cryosphere, Atmosphere & Solar Drivers; Climate Dynamics, Modes of Variability & Teleconnections; Monthly to Decadal Predictability & Prediction	Climate Change Forcing & Sensitivity; Climate Change Attribution; Climate Change Projections (Global & Regional) for Mitigation & Adaptation; Abrupt Climate Change; Geoengineering Assessment			

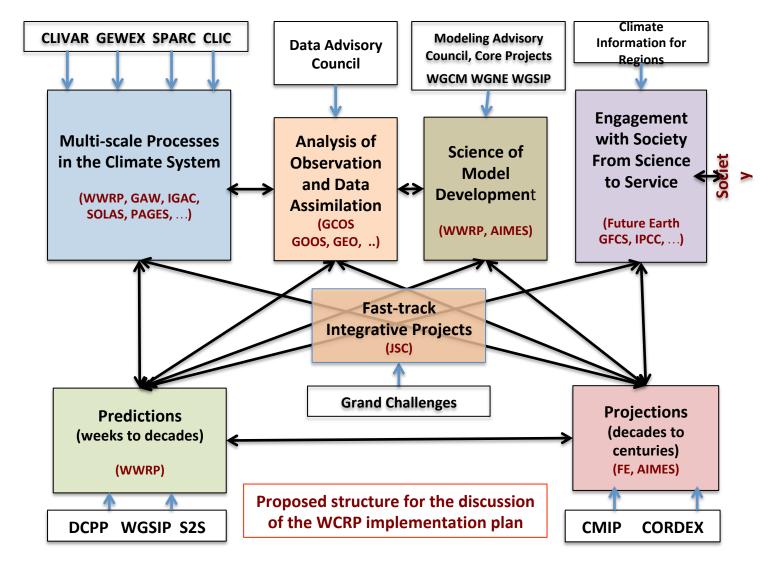
WCRP CROSS-CUTTING RESEARCH PROJECTS

WCRP WORKING GROUP ON CLIATE MODEL DEVELOPMENT jointly with WGNE

WCRP WORKING GROUP ON CLIMATE INFORMATION FOR REGIONS

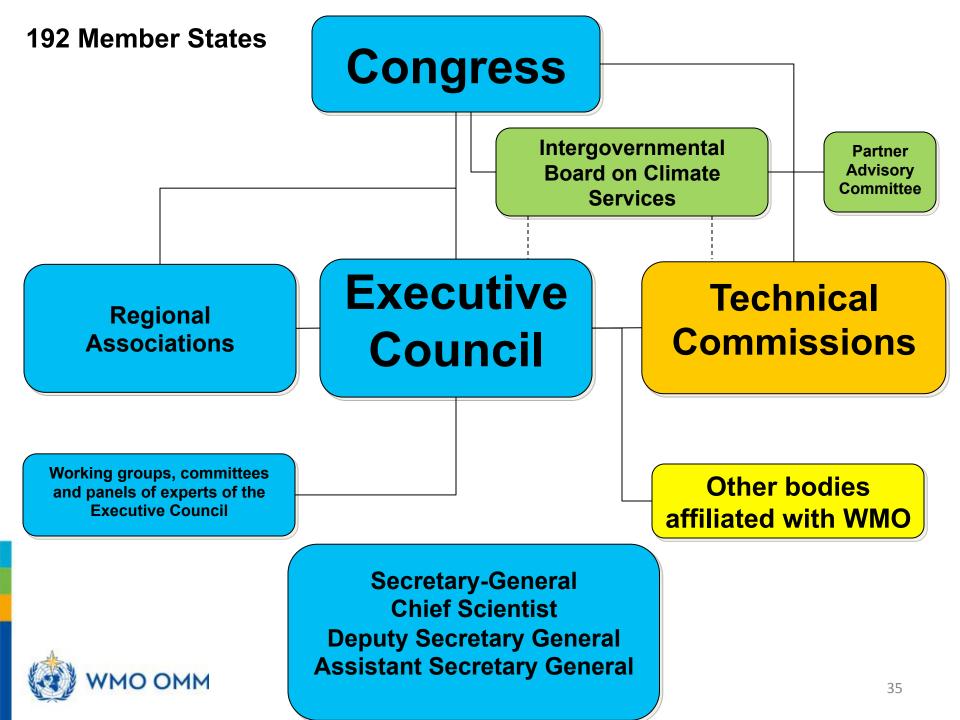
linking with Future Earth

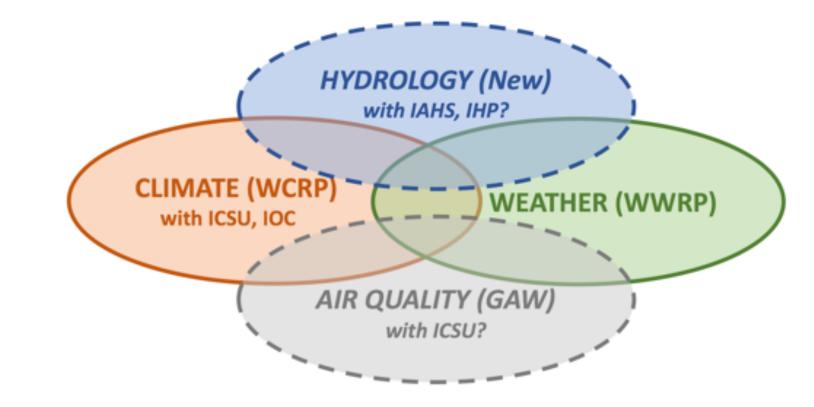
Regional downscaling methods; Application-inspired Climate Science; Transdisciplinary Engagement


Recommendation 8: Partnership

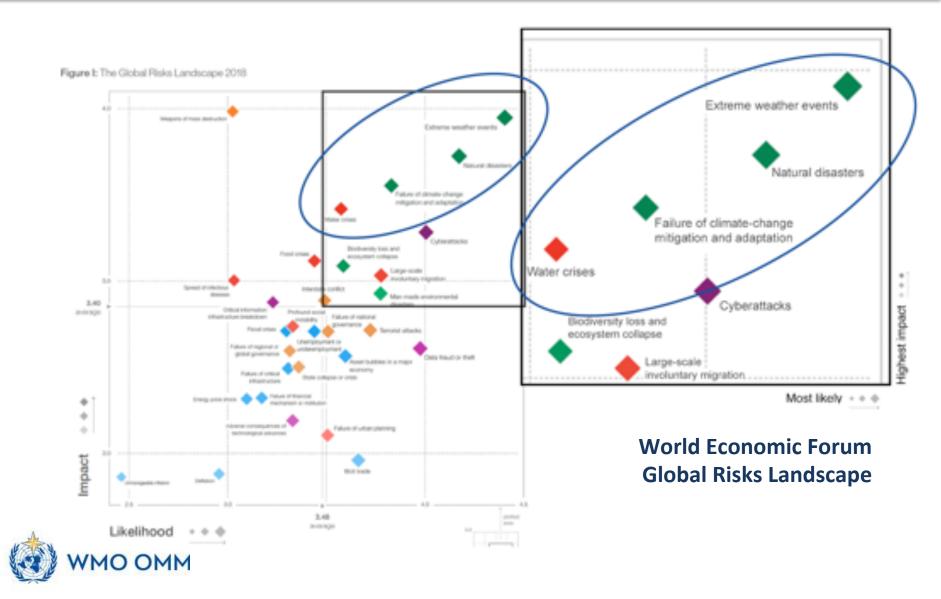
WCRP should seek to develop strategic and strong partnerships with other WMO research programmes (specifically WWRP and GAW), with GCOS, and with Future Earth.

 WCRP urgently explores the option of the co-design and coproduction of projects that address key scientific challenges of common interest to WCRP, WWRP, GAW and Future Earth.




WMO New Strategy

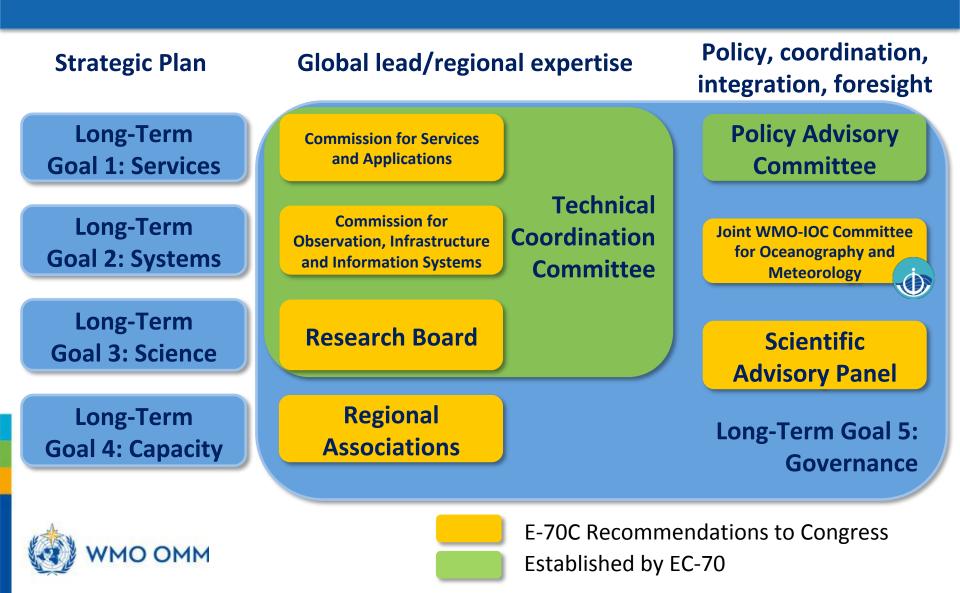
- Effectiveness and efficiency
- Seamless integrated approach (spatial, temporal):
 - Earth System approach
 - WMO acting as one
- Wider engagement of Members & national experts
- Agility to uptake new challenges and tasks
- Improved collaboration with partners



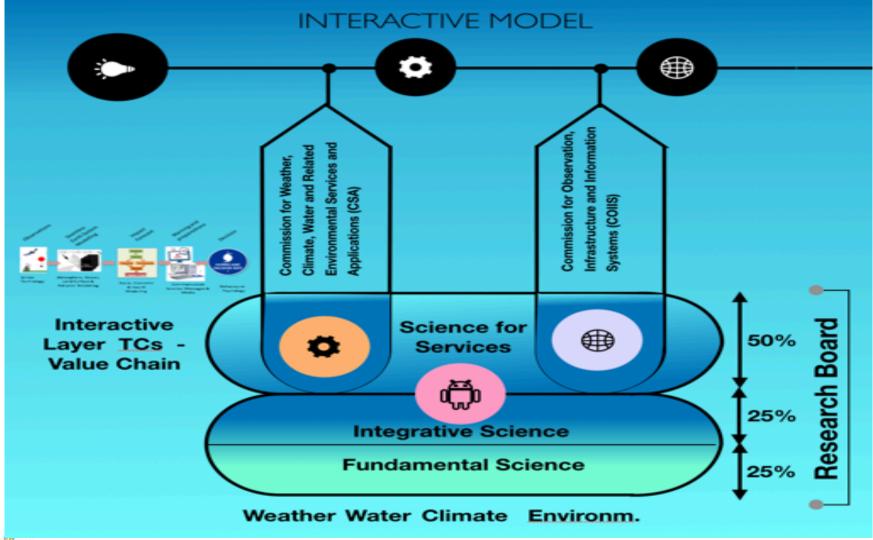
WMO SCIENCE ADVISORY PANEL WMO RESEARCH BOARD

Perspective for the coming decade

WMO Strategic Operating Plan


	Vision 2030	By 2030, a world where all nations, especially the most vulnerable, are more resilient to the socioeconomic impact of extreme weather, climate, water and other environmental events, and empowered to boost their sustainable development through the best possible services, whether over land, at sea or in the air					
	Overarching Priorities	Enhancing prepar and reducing los and propert hydrometeorologic	ses of life sup y from m	Supporting climate-smart decision making to build resilience and adaptation to climate risk Enhancing socioeconomic value of weather, climate, hydrological and related environmental services			
	Core Values	Accountability f	or Results and Transpare	ncy • Collaboration and Pa	artnership • Inclusivenes	s and Diversity	
)	Long-Term Goals	Better serve societal needs: Delivering authoritative, accessible, user-oriented and fit-for-purpose information and services	2 Enhance Earth system observations and predictions: Strengthening the technical foundation for the future	Advance targeted research: Leveraging leadership in science to improve understanding of the Earth system for enhanced services	4 Close the capacity gap: Enhancing service delivery capacity of developing countries to ensure availability of essential information and services	Strategic realignment of WMO structure and programmes: Effective policy- and decision-making and implementation	
	Strategic Objectives 2020-2023 focus	 Strengthen national multi- hazard early warning/ alert systems and extend reach to better enable effective response to the associated risks Broaden the provision of policy- and decision- supporting climate information and services Further develop services in support of sustainable water management Enhance the value and innovate the provision of decision-supporting weather information and services 	 2.1 Optimize the acquisition of observation data through the WHO Integrated Global Observing System 2.2 Improve and increase access to, exchange and management of current and past Earth system observation data and derived products through the WHO Information System 2.3 Enable access and use of numerical analysis and prediction products at all temporal and spatial scales from the WHO seamless Global Data Processing and Processing and Processing and Processing and Processing and Process System 		 4.1 Address the needs of developing countries to enable them to provide and utilize essential weather, climate, hydrological and related environmental services 4.2 Develop and sustain core competencies and expertise 4.3 Scale-up effective partnerships for investment in sustainable and cost-efficient infrastructure and service delivery 	5.1 Optimize WHO constituent body structure for more effective decision-making 5.2 Streamline WHO programmes 5.3 Advance equal, effective and inclusive participation in governance, scientific cooperation and decision- making	

Effectiveness and efficiency Seamless integrated approach (spatial, temporal):


- Earth System approach
- WMO acting as one
 Engagement of Members' experts
 Agility to uptake new challenges and tasks
 Improved collaboration with partners

Alignment of WMO Structure

Interactive Model for Supporting Seamless Science and Science for Service & Innovation

🕢 wmo омм

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

Thank you Merci

WMO OMM

World Meteorological Organization Organisation météorologique mondiale