Land-atmosphere coupling in global fully coupled storm-resolving simulation

Junhong Lee and Cathy Hohenegger

Global Atmospheric System Studies

Max Planck Institute for Meteorology, Germany junhong.lee@mpimet.mpg.de

Max-Planck-Institut für Meteorologie

Motivation

- Different land-atmosphere coupling signs and strengths have been reported by past studies with global coarse resolution simulation and past studies with regional high resolution simulation

- This is because,

· global coarse resolution cannot consider <u>1) detail topography</u>, <u>2) land surface heterogeneity</u> (e.g. landuse), and cannot resolve <u>3) small-scale circulation</u> (e.g. vegetation breeze)

 \cdot regional high resolution cannot consider <u>1</u>) larger scale circulation and <u>2</u>) impact of the ocean (e.g. moisture fluxes)

- What does land-atmosphere coupling look like with global fully coupled storm-resolving simulation?

- Correlation coefficient shows the opposite sign between ICON5 and ICON160 over Europe \rightarrow Hydrological regime can be different between ICON5 and ICON160

Hydrological regime: - Determine regime: regime transition dry wet $\theta_{pwp} < \theta < \theta_{crit}$ condition $\theta < \theta_{pwp}$ $\theta_{crit} < \theta$ $\theta_{crit} \simeq 1.9$ (a) ICON5 (b) ICON160 regime map regime map

- How is it different from coarser resolution simulation in terms of coupling pattern and strength?

Method

Data:						NextGEMS project
	Name	Resolution	Period	Reference	\rightarrow	Project to develop two next generation (storm-resolving) Earth-system Models. These models will allow us to understand and reliably quantify how the climate will change on a global and regional scale. https://nextgems-h2020.eu/
	ICON5	5 km	JJA, 2020	NextGEMS simulation		
	ICON160	160 km	JJA, 60 years	CMIP6 low-res ICON		
	FLUXNET 2015	-	JJA, 1991-2014	Pastorello et al. 2020		

Coupling metrics: correlation coefficient:

AC

GEMS

Land-temperature coupling

- ICON5 has wetter soil & more energy-limited regime over Europe (northern hemisphere)

ICON5 has drier soil & more water-limited regime over Sahel, Africa, Australia (southern hemisphere)

Land-precipitation coupling

Correlation coefficient:

Correlation coefficient:

- ICON5 is closer to FLUXNET2015 and falls into the internal variability of FLUXNET2015 well - ICON160 shows stronger negative Corr(ET, T_{air}) \rightarrow stronger coupling in low resolution in (1) waterlimited regime

Contribution to coupling (Sahel):

	ΔΡ/ΔΕΤ	ΔΕΤ/ΔSΜ
ICON5	16.66	0.0163
ICON160	39.32	0.1641
Ratio (ICON5/ICON160)	0.424	0.099

- Again, ICON5 is closer to FLUXNET2015

- Corr(ET,P) shows the opposite sign between ICON5 and ICON160 over Europe

- ICON160 shows stronger positive Corr(ET, P) in (1) water-limited regime

 \rightarrow larger $\Delta P/\Delta ET$ and $\Delta ET/\Delta SM$ indicates stronger coupling and ET-SM link is dominating factor

Summary & conclusion

Land-atmosphere coupling in storm-resolving simulation and coarser resolution simulation:

1. Two resolution simulations show opposite coupling signs over Europe

2. Storm-resolving simulation is close to the observation

3. Storm-resolving simulation shows weaker coupling strength in water-limited regime