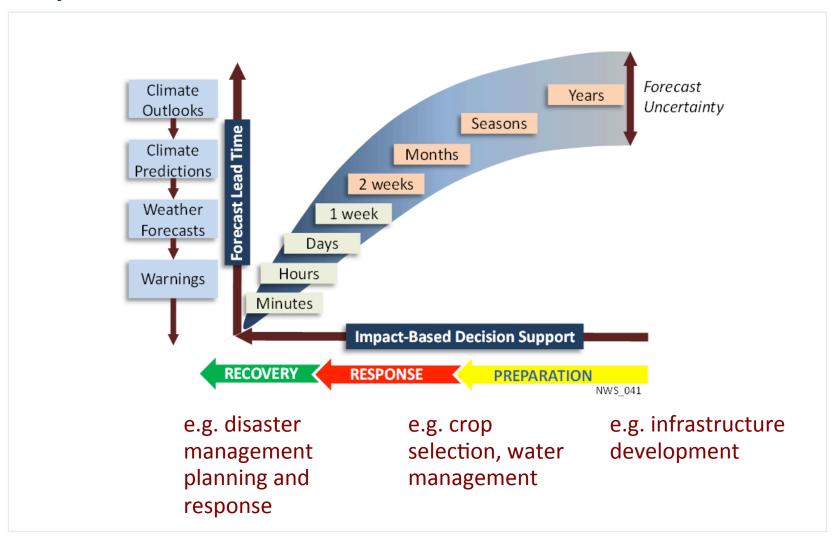


Advancing Climate Science and Services in NOAA Climate Program Office

DORA TOPOLOGIA

Outline:


- Introduction on NOAA mission and priorities
- CPO programs and ongoing activities
- Summary and Discussions

Jin Huang (NOAA Climate Test Bed)
with inputs from CPO
Wayne Higgins and Annarita Mariotti

May 3rd, 2016

NOAA is responsible to deliver

Timely, credible, useful - across all time scales

NOAA's Mission Drivers for Climate

RESPONDING TO THE NEED FOR CLIMATE INFORMATION ACROSS ALL SECTORS OF OUR ECONOMY DRIVING NEW OPERATIONAL PRODUCTS & APPLICATIONS

NOAA Priority: Integration across four (initial) societal challenges critical to NOAA's mission

Coastal Inundation

Drought and Water

Extremes

Marine Ecosystems

What is the Role of NOAA's Climate Program Office?

CPO's Unique Value

CPO's position at the intersection of NOAA's science and service missions, the climate research community, and the broader climate enterprise enables it to lead a research agenda and forge partnerships that enhance society's ability to make effective decisions.

Understanding and Modeling

Earth System Science
Predictions &
Projections

CPO Mission: We advance scientific understanding, monitoring, and prediction of climate and its impacts to enable effective decisions

Observing Systems,
Climate Monitoring
&
Data Stewardship

Informing Decisions

Information Systems
Regional Capacity
Communication &
Education

CPO Research

One of CPO's key activities is supporting a unique and highly flexible climate research enterprise that focuses on:

- Competitive grant programs and other types of support that advance and extend NOAA's foundational capabilities. Annual FFO.
- Tighter integration between CPO's observing, modeling, earth system science, and decision research
- Research collaboration with labs, line offices and others across NOAA
- Partnerships with other federal agencies, academia, the private sector and the international community to develop and deliver targeted research and data products
- Research-derived knowledge and information to improve public climate literacy and decision-making needed to maintain resilient economies and environmental services

CPO FY16 Research Competitions

Climate Observations and Monitoring (COM)

1. *In Situ* Technologies to Contribute to the Tropical Pacific Observing System 2020 Project

Earth System Science (ESS)

- 2. Atmospheric Chemistry, Carbon Cycle, & Climate (AC4): **Fires in the Western** US: Emissions and Chemical Transformations
- 3. Climate Variability & Predictability (CVP): **AMOC**-Climate Linkages in the N. and/or
- S. Atlantic

Modeling, Analysis, Prediction, and Projections (MAPP)

- 4. **NOAA Climate Test Bed** Accelerating Transition of Research into Operations
- 5. Research to Advance **Prediction of Subseasonal to Seasonal** Phenomena

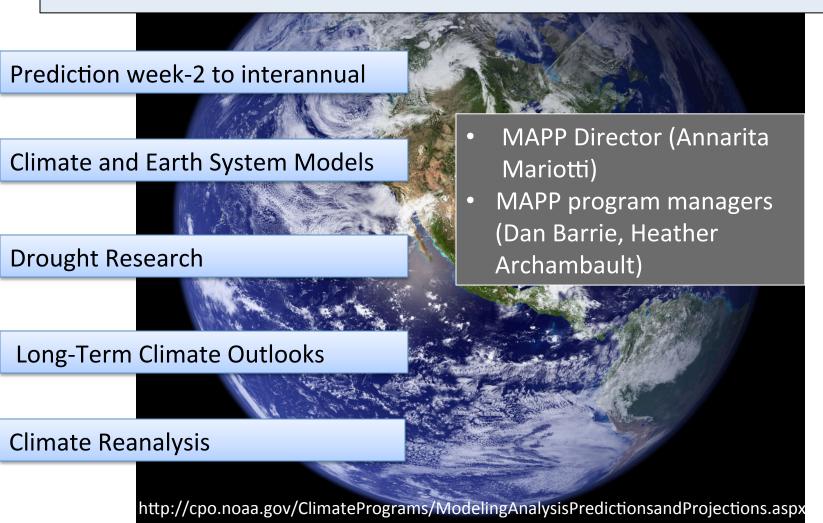
Climate and Societal Interactions (CSI)

- 6. COCA Ecosystem Services for a Resilient Coast in a Changing Climate
- 7. RISA Regional Integrated Sciences and Assessments Existing Regions
- 8. RISA Regional Integrated Sciences and Assessments New Regions
- 9. SARP NIDIS: Coping with Drought
- 10. SARP Water Resources and Extreme Events

CPO ESS Program

Scope/Objective:

 supports research to provide a process-level understanding of the climate system through observation, modeling, analysis, and field studies. Program Director (Jim Todd)
CVP program manager (Sandy
Lucas)
AC4 Program managers (Monica
Kopacz and Ken Mooney)


Examples of FY15 ESS projects/achievements:

- DYNAMO campaign aircraft observations improve understanding of MJO
- Understanding Madden--Julian Oscillation Initiation and Propagation
- Will future global cloud changes amplify global warming?
- Understanding Arctic Sea Ice Mechanisms and Predictability
- Wintertime Atmospheric Response to North Atlantic Ocean Circulation Variability
- Sea level change and subsidence in the Delaware Estuary during the last 2200 years
- CVP-funded research tests microphysical schemes in the WRF model
- Nitrogen Cycle improvements in the GFDL Earth System Models (Horowitz et al)
- Emissions from thawing permafrost add trillions in economic impacts (Hope & Schaefer)

MAPP Program Research Goals

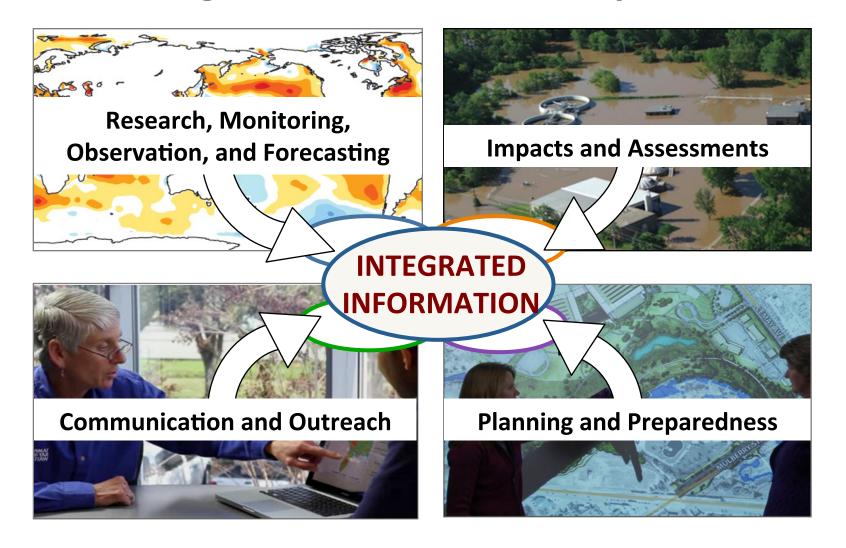
Advance understanding and prediction of variability and changes in Earth's climate system and infuse research advances into NOAA's service activities

Examples of MAPP Research

- Spring ENSO Variations and North Atlantic SSTs Could Help Long-Range Prediction of U.S. Tornado Outbreaks
- Will climate change increase summertime temperature variability and heat waves by 2100?
- Drought understanding and prediction in the Central U.S.
- high resolution impacts on forecast skill of tropical cyclone activity in coupled systems
- MAPP-CTB (in partnership with NCEP) projects to improve NCEP operational models and predictions
 - Cloud-Climate Process Team 1 (Krueger, Moorthi, et al)
 - Cloud-Climate Process Team 2 (Bretherton, Jongil, et al)
 - Lake Module (J-M Jin, Ek, et al)
 - Land Module, Noah MP (Chen, Ek, et al)
 - Aerosol Module (Lu, Hou, Moorthi, et al)
 - North American Multi-Model Ensemble (NMME)

High Resolution Workshop

- DOE-NOAA jointly hosted a workshop on High-Resolution
 Coupling and Initialization to Improve Predictability and
 Predictions in Climate Models 30 September to 2 October 2015
- A report summarizes the current status of the research suggests potential experimental research framework for addressing major questions while considering computing resource requirements.



Workshop Participants: The workshop included over 40 participants from various leading U.S. climate modeling and operational prediction institutions, including representatives from several international groups. Image courtesy of William Chona, NOAA/CPO.

http://cpo.noaa.gov/sites/cpo/MAPP/pdf/High_Resolution_Workshop_Report_FINAL_WEB.pdf

Integrated Information Systems

National Integrated Drought Information System (NIDIS) is an example of integrated information systems

Summary and Discussions

- CPO programs support the global observing system, advance understanding of the Earth system, improve models and forecasts, and communicate, educate, and engage
- CPO knits these investments together into Integrated Information Systems that inform early warning to early action.
- How can GEWEX/RHP play a unique role in contributing to the NOAA mission? e.g.,
 - to advance earth system models and prediction capabilities
 - to understand the processes and phenomena leading to drought and extremes, especially at regional scales
- Other opportunities in NOAA
 - RTAP (for R2O); NGGPS
 - National Water Center