

Parameterizing Unified Microphysics Across Scales (PUMAS): Advancing Simulation for Weather and Climate

Gettelman, Morrison, Eidhammer, Thayer-Calder (NCAR)

Cloud Microphysics Critical for Weather & Climate Major Issues for Clouds, Precipitation and Aerosols

- Cloud Phase
 - Critical for radiative effects at high latitudes AND for cloud feedbacks. Also weather impacts
- Cloud Microphysics: size distributions govern process rates
- Dynamics-Microphysics coupling
 - Vertical structure of clouds: cloud base, freezing, entrainment at top
- Aerosol activation (cloud-aerosol interactions)
 - Vertical velocity critical
- Precipitation Formation: Frequency & Intensity

A (not so unique) vision: Seamless Prediction System for Integrated Modeling of the Atmosphere (SIMA)

Atmospheric Modeling Ecosystem in Mid-2010s

SIMA-based Atmospheric Modeling System in Mid-2020s

What is Cloud Microphysics?

A = cloud fraction, $q=H_2O$, re=effective radius (size), T=temperature (i)ce, (l)iquid, (v)apor, (r)ain, (s)now

Types of Microphysical Schemes

Two Moment = Prognostic Mass and Number One Moment = Prognostic Mass, Diagnostic Number/Size

Microphysics, Size distributions Advanced GCMs/GSRMs can be compared directly to cloud microphysical size distributions (here from SOCRATES).

Microphysics: Comparing to Reflectivity

Comparisons over Macquarie Island in S. Ocean between a precipitation radar and single column simulations with **one-moment** and **2-moment** microphysics in the ECMWF-IFS SCM.

Robustness: Parameter Uncertainty Perturbed Parameter Ensemble (PPE)

Eidhammer, Gettelman, Thayer-Calder, Duffy

PD

30

Climate Extremes: Variable-Resolution ($60 \rightarrow 3$ km)

- Global Model: CESM-MPAS: 3km regional, no hydrostatic dynamics.
- Regional climate model: WRF (CONUS) 4km (Rasmussen et al., 2021)

W. USA Wet-season (Nov-Mar) precip (5yrs)

- CESM-MPAS results compare well to obs
- Smaller biases than WRF mesoscale model

Daily precipitation Intensity PDF

4km Mesoscale Model (WRF) 3km Global Model (CESM) 4km Observations

CESM captures observed PDF better than WRF, especially for extreme precipitation X. Huang, NCAR

Climate Extremes: Variable-Resolution ($60 \rightarrow 3$ km)

- Central US Summertime squall line. 24 hour forecast valid 0 UTC 27 April 2017
- Mesoscale model v. Climate Model

Machine Learning the Warm Rain Process

NN Emulator reproduces detailed code

Can we do the warm rain process better with Machine Learning?

Replace traditional GCM bulk rain formation with a bin model formulation for stochastic collection. This is too expensive for climate use. So emulate it with a neural network.

Results:

- We can change the answer in the model with the bin code.
- Very slow when using full treatment
- Recover speed and recover results with a neural network emulator (it works)
- Embedded NN in the microphysics: maintains conservation with series of checks

Emulator Performance $\log_{10}(dq_r/dt)$

Improving results with Machine Learning

Latest developments

- Ice Nucleation: especially mixed phase
 - Evaluate CNT Treatment (Hoose et al 2010,) v. empirical from data (DeMott et al 2015, McCluskey et al 2018)
- Unified Ice/Snow: eliminate artificial separation
 - Predicted Particle Properties (P3)-like
 - Eidhammer et al 2016 (From Morrison and Milbrandt 2015)
- 'Open up' model structure: allow size distribution properties to vary, and learn them from data
 - Morrison et al (2020)

Open Source Code

- https://github.com/ESCOMP/pumas
- Used in different GCMs now
 - CESM1/2 (and derivatives)
 - GISS, DOE (E3SMv1), GFDL
 - Single column container version for development/tutorials
- Users contributing to development and evaluation

Gmail 💡	Maps 🖪 Cal 🗎	AGWork 🗎 Electricity 🗎 Financial 🔇 NCAR	Library Proxy 🐮 N	NY Times weather » 🖻 Other Bookm
<> Code	 Issues 2 	Public) \$ Pull requests ⓒ Actions 田 Project	s 1 🖽 Wiki	Outifications ♀ Fork 8 ♀ Star 3 ←
mast	ter - 양 17 bran	ches S 29 tags Go t	o file Code -	About Parameterization for Unified
ces kid	m_test_scripts _mg3_31	Updates to global script to get MG2 running Setting up the PUMAS github repo with code Updates to README.md to include PUMASDe	3 years ago 3 years ago 2 years ago	대 Readme ☆ 3 stars ③ 9 watching
mic mic mic mic	ro_mg1_0.F90 ro_mg3_0.F90 ro_mg4_0.F90	Setting up the PUMAS github repo with code changed nscng from - to + in dum statement added namelist changes to micro_mg4	3 years ago 2 years ago 2 years ago	Releases
🗋 mic	ro_mg_data.F90 ro_mg_utils.F90	Setting up the PUMAS github repo with code Andrews changes from cam6_2_014	3 years ago 2 years ago	Packages
E REA PU Parar This I	ADME.md	ified Microphysics Across Scales s the open source code for most versions of	the Morrison-	No packages published Contributors 2 Katetc Kate Thayer-Calder trudeeidhammer
Gettle closu	eman (MG) microp re and is now calle	hysics as well as the version which includes d the Parameterization for Unified Microphy	a unified ice vsics Across	Languages

Future Work: Where does it all go?

- Better uncertainty quantification (parameters, processes)
- Machine learning/emulators
 - Parameterization replacement
 - Learning model structure (BOSS)
- Model-data fusion, using observations
- Crossing scales (LES--> Global)
- New modeling capabilities for global km scale models
- Scalable complexity
 - Complexity varies by scale (e.g. hail)
- Be careful not to get eaten!

