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Cloud Microphysics Critical for Weather & Climate
Major Issues for Clouds, Precipitation and Aerosols

• Cloud Phase 
• Critical for radiative effects at high latitudes AND for cloud feedbacks. Also 

weather impacts
• Cloud Microphysics: size distributions govern process rates
• Dynamics-Microphysics coupling
• Vertical structure of clouds: cloud base, freezing, entrainment at top

• Aerosol activation (cloud-aerosol interactions) 
• Vertical velocity critical

• Precipitation Formation: Frequency & Intensity



A (not so unique) vision: Seamless Prediction
System for Integrated Modeling of the Atmosphere (SIMA)



What is Cloud Microphysics? 
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Types of Microphysical Schemes

Two Moment = Prognostic Mass and Number
One Moment = Prognostic Mass, Diagnostic Number/Size

Figure: Morrison et al 2020, JAMES

Used in models at scales:
Global & Mesoscale models Mesoscale /Large Eddy Simulations/Parcel LES/Parcel



Microphysics, Size distributions
Advanced GCMs/GSRMs can be compared directly to cloud 
microphysical size distributions (here from SOCRATES). 

Gettelman et al 2020Note potential issue with too large rain sizes

Comparison is GCM cloud microphysics along aircraft flight tracks with in-situ data



Microphysics: Comparing to Reflectivity

Gettelman, Forbes, Fielding, in Prep

Comparisons over Macquarie Island in S. Ocean 
between a precipitation radar and single column 
simulations with one-moment and 2-moment
microphysics in the ECMWF-IFS SCM. 
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Robustness: Parameter Uncertainty
Perturbed Parameter Ensemble (PPE) Eidhammer, Gettelman, Thayer-Calder, Duffy

Control run (Baseline CAM6 parameters)
Mean over all 250 simulations

Liquid water path

Average cloud top liquid number

Longwave cloud forcing

Net solar flux at top of model



● Global Model: CESM-MPAS: 3km regional, non-
hydrostatic dynamics.

● Regional climate model: WRF (CONUS) 4km 
(Rasmussen et al., 2021)

Climate Extremes: Variable-Resolution (60à3 km) 

X. Huang, NCAR

W. USA Wet-season (Nov-Mar) precip (5yrs)
• CESM-MPAS results compare well to obs
• Smaller biases than WRF mesoscale model 

California Oregon Washington
Daily precipitation Intensity PDF

4km Mesoscale Model (WRF)
3km Global Model (CESM)
4km Observations

CESM captures observed PDF better than 
WRF, especially for extreme precipitation



● Central US Summertime squall line. 24 hour forecast valid 0 UTC 27 April 2017
● Mesoscale model v. Climate Model

Climate Extremes: Variable-Resolution (60à3 km) 

M. Chen, W. Skamarock, X. Huang, NCAR

Reflectivity (dBZ)

observed WRF physics CAM6/MG2* CAM6/PUMAS*

(* Computed using single-moment reflectivity diagnostic)

CAM6 = CMIP Model CAM6+Graupel



Can we do the warm rain process better with Machine Learning?

Replace traditional GCM bulk rain formation with a bin model 
formulation for stochastic collection. This is too expensive for 
climate use. So emulate it with a neural network.

Results:
• We can change the answer in the model with the bin code. 
• Very slow when using full treatment
• Recover speed and recover results with a neural network 

emulator (it works)
• Embedded NN in the microphysics: maintains conservation with 

series of checks

Emulator Performance

Bin code is Different 
than original model

NN Emulator reproduces 
detailed code

Machine Learning the Warm Rain Process

Gettelman et al 2021, JAMES



Improving results with Machine Learning

Precipitation Frequency

Control v. Observations and 
Bin precipitation and ML Emulator.
Using stochastic collection from a bin scheme 
improves large scale precipitation frequency in 
shallow clouds

Gettelman et al 2021, JAMES

Stochastic collection 
equation for warm rain in a 
bulk scheme

Reduces rain rate for small 
drop sizes but large LWP

Emulator reproduces this



Latest developments

• Ice Nucleation: especially mixed phase
• Evaluate CNT Treatment (Hoose et al 2010, ) v. empirical from data (DeMott et 

al 2015, McCluskey et al 2018)

• Unified Ice/Snow: eliminate artificial separation
• Predicted Particle Properties (P3)-like
• Eidhammer et al 2016 (From Morrison and Milbrandt 2015)

• ‘Open up’ model structure: allow size distribution properties to vary, 
and learn them from data 
• Morrison et al (2020)



Open Source Code

• https://github.com/ESCOMP/pumas
• Used in different GCMs now
• CESM1/2 (and derivatives) 
• GISS, DOE (E3SMv1), GFDL
• Single column container version for 

development/tutorials
• Users contributing to development and 

evaluation

https://github.com/ESCOMP/pumas


Future Work: Where does it all go?

• Better uncertainty quantification (parameters, processes)
• Machine learning/emulators
• Parameterization replacement
• Learning model structure (BOSS)

• Model-data fusion, using observations
• Crossing scales (LES--> Global) 
• New modeling capabilities 

for global km scale models
• Scalable complexity
• Complexity varies by scale (e.g. hail)

• Be careful not to get eaten!


