Soil Parameter Model Intercomparison Project (SP-MIP): Assessing the influence of soil parameters on the variability of Land Surface Models

Coordination

Lukas Gudmundsson, Matthias Cuntz

Scientific Advisory Committee

Sonia I. Seneviratne, Dani Or, Harry Vereecken, Anne Verhoef, Tomislav Hengl, Aaron Boone

Background and Purpose

Land surface models (LSMs) simulate the movement of water and energy through the plant-soil system, amongst other things. There is currently a considerable spread among different land surface models regarding their outputs of water-balance variables such as evapotranspiration, soil moisture or runoff. It is not clear, however, whether this spread is related to model structure (i.e. equations used to describe the underlying processes) or model parameters (i.e. physical properties of the Earth system such as soil porosity).

To approach the question to which degree LSM spread is related to model parameters, controlled multi-model experiments were proposed at the GEWEX-SoilWat workshop held in Leipzig on June 28-30, 2016.

Two steps are necessary to produce soil model parameters such as soil porosity or saturated hydraulic conductivity in each LSM: 1. an input soil map is needed, which may contain soil classes or soil texture information, and 2. the required model parameters must be calculated from the information given by the soil map, for example with look-up tables, given soil classes in the soil map, or via the use of pedotransfer functions given soil textures in the soil map. SP-MIP aims at quantifying the differences between LSM model results that stem from either of the two preparation steps for soil parameters.

There is an intermediate step in the preparation of LSM input data that is not treated within SP-MIP, which is the aggregation of the soil map information or the soil parameters onto the model resolution.

Proposed Experiments

The experiments closely follow the LS3MIP protocol (van den Hurk et al. 2016). The models are run globally on 0.5° with GSWP3 forcing (Kim et al. 2016) from 1900-2014 (see below). There will be 4 Tier 1 experiments, leading to 6 model runs (see also Figure 1):

Experiment 1: Soil-hydraulic parameters provided by SP-MIP

Models are run using soil hydraulic parameters that are provided by SP-MIP. The *purpose* of this experiment is to establish a baseline of inter-model variability that comes from model components other than the soil parameters, to assess to which degree between-model variability can be reduced by enforcing common soil hydraulic properties.

Experiment 2: Soil-hydraulic parameters derived from common soil textural properties

Each modelling group runs their model using relevant soil hydraulic parameters derived based on global maps of soil textural properties provided by SP-MIP. The soil hydraulic parameters should be derived using the lookup tables or pedotransfer functions that are commonly used for the corresponding models. The *purpose* of this experiment is to quantify to which degree between-model variability is related to differences in transferring soil texture information to soil hydraulic properties.

Experiment 3: Reference run with all models in their status quo

All models are run in their default settings. The *purpose* of this experiment is to assess the variability that comes from both the original soil information used by the corresponding model and the model-specific transfer of this soil information into model parameters.

Experiment 4a, b, c, d: Spatial uniform soil parameters

All models are run three times using spatially uniform soil-hydraulic parameters for the whole globe. For this, four "design soils" corresponding to loamy sand, loam, clay, and silt (previously considered by Montzka et al., 2011) are provided by SP-MIP, together with the relevant soil hydraulic parameters. The *purpose* of this experiment is (a) to quantify the effect of spatial variability of soil parameters (or the lack thereof) on between-model-variability, (b) to systematically assess the sensitivity of each model to soil hydraulic parameters and (c) to investigate to which degree between grid-cell variability of key water- and energy balance outputs is controlled by soil-properties in the model world.

Ex1: Identical soil parameter maps

• Global soil hydraulic parameter maps provided by SP-MIP

Ex2: Identical soil texture maps

• Global soil texture maps provided by SP-MIP

• Hydraulic parameters are derived by the modelling groups individually

Ex3: Default soil parameter maps

• Each model is run with its default soil parameter maps

Ex4: Spatially uniform soil parameters

- Four model runs with spatially uniform soil parameters
- Considered soil types: loamy sand, loam, clay, and silt

Figure 1: Overview on the four SP-MIP experiments.

Analysis of experiments

Differences between the model experiments will allow the assessment of the inter-model variability that is introduced by the different stages of preparing model parameters.

Experiment 2 – Experiment 1 gives the variability between the models that is introduced by the usage of different pedotransfer procedures from soil information to model parameters.

Experiment 3 – Experiment 2 gives the variability that comes from different soil maps and aggregation schemes used for the different models.

Analysis of variance

An ANOVA-type of analysis is proposed to approach the question to which degree between model variability can be reduced by prescribing common soil hydraulic parameters or soil maps. The between model spread at each grid-cell will first be quantified for experiment 1 and subsequently compared to the spread of the remaining experiments. To assess the impact of soil hydraulic parameters on different dynamical aspects the analysis will be conducted on numerous time scales including (a) daily, (b) monthly, (c) annual resolution as well as climatology's (long-term means).

First order sensitivity analysis:

To quantify to which degree errors in soil-hydraulic parameters impact complex LSM simulations, a first-order sensitivity analysis will be conducted using the simulations of Experiment 4. In a first step, the spread among the three model runs with spatially uniform soil parameters will be quantified at

each grid-cell for each model individually. Subsequently, the spread will, for example, be stratified along climatic gradients, biomes or plant functional types (etc.) to determine under which conditions simulation results are most sensitive in soil-hydraulic parameters.

Timeline

12/2016	Contact possible participants.
12/2016	Detail designs of model experiments.
02/2017	Prepare common input data; establish IT infrastructure.
03-05/2017	Conduct model simulations.
05-09/2017	Data analysis; preparation of publication.

Forcing Data

The GSWP3 forcing data (Kim et al. 2016) will be used to drive offline LSM simulations. The GSWP3 forcing data are available in NetCDF format and comprise the essential atmospheric variables for modelling land surface processes in 0.5° spatial and 3 h temporal resolution (Table 1). An atmospheric CO2 concentration of 380ppm is assumed.

Table 1: 3h variables related to the energy and water cycles. The dimension (Dim.) column indicates

 T: time, Y: latitude, X: longitude.

Name	standard_name (cf)	long_name (netCDF)	Unit	Dim.
LWdown	surface_downwelling_longwave_flux_in_air	Downward Longwave Radiation	W m ⁻²	TYX
SWdown	surface_downwelling_shortwave_flux_in_air	Downward Shortwave Radiation	W m ⁻²	TYX
Tair	NA	Air Temperature at 2 m	К	TYX
PSurf	surface_air_pressure	Surface Pressure	Ра	TYX
Qair	NA	Specific Humidity at 2 m	kg kg ⁻¹	TYX
Wind	NA	Wind Speed at 10 m	M s ⁻¹	TYX
Rainf	rainfall_flux	Rainfall	kg m ⁻² s ⁻¹	TYX
Snowf	snowfall_flux	Snowfall	kg m ⁻² s ⁻¹	ТҮХ

Model Output Data

Primary target variables are hydrological fluxes and states, i.e. evapotranspiration, surface and subsurface runoff, soil moisture in soil layers, and root zone soil moisture.

Secondary target variables are related to energy (sensible heat flux, surface and soil temperatures, etc.) but SP-MIP shall focus on hydrology.

All target variables are Tier 1 variables in LS3MIP. Requested output variables are hence all $p^* = 1$ variables of Tables A1 and A2 of van den Hurk et al. (2016) and given in Table 2. Additionally, hydraulic and thermal conductivities as well as heat capacity in the soil should be output.

Model outputs should be submitted in NetCDF format with variable names of Table 2. The NetCDF files will have a time dimension (T) for all variables and a level dimension for soil state variables (Z).

Table 2: Daily variables related to the energy and water cycles. The dimension (Dim.) column indicates T: time, Y: latitude, X: longitude, and Z: soil or snow layers. "Direction" identifies the direction of positive numbers.

Name	standard_name (cf)	long_name (netCDF)	Unit	Direction	Dim.
Energy					
rss	surface_net_downward_shortwave_flux	net shortwave radiation	W m ⁻²	downward	TYX
rls	surface_net_downward_longwave_flux	net longwave radiation	W m ⁻²	downward	TYX
hfls	surface_upward_latent_heat_flux	latent heat flux	W m ⁻²	upward	TYX
hfss	surface_upward_sensible_heat_flux	sensible heat flux	W m ⁻²	upward	TYX
hfds	surface_downward_heat_flux	ground heat flux	W m ⁻²	downward	TYX
hfdsn	surface_downeard_heat_flux_in_snow	downward heat flux into snow	W m ⁻²	downward	TYX
dtes	change_over_time_in_thermal_energy_ content_of_surface	change in surface heat storage	J m ⁻²	increase	ТҮХ
dtesn	change_over_time_in_thermal_energy_ content_of_surface_snow_and_ice	change in snow/ice cold content	J m ⁻²	increase	ТҮХ
ts	surface_temperature	average surface temperature	к	-	TYX

Lukas Gudmundsson 1/31/2017 2:17 PM Comment [1]: Should be updated if needed

Lukas Gudmundss..., 2/14/2017 10:03 AM Comment [2]: Currently not included in the netcdf files of the beta-version of the GSWP3 forcing data.

Will be updated

albs	surface albedo	surface albedo	_	_	түх
albsn	snow and ice albedo	snow albedo	_	_	түх
snc	surface snow area fraction	snow covered fraction	_	_	түх
tsl	soil temperature	average laver soil temperature	к	-	TZYX
tsnl	snow temperature	temperature profile in the snow	к	-	TZYX
tasmax	air temperature maximum	daily maximum near-surface air	к	-	түх
		temperature			
tasmin	air_temperature_minimum	daily minimum near-surface air	к	-	ТҮХ
Water		temperature			
nr	precipitation flux	precipitation rate	kg m ⁻² s ⁻¹	downward	түх
prveg	precipitation flux onto canopy	precipitation onto canopy	kg m ⁻² s ⁻¹	downward	түх
et	surface evapotranspiration	total evapotranspiration	kg m ⁻² s ⁻¹	upward	түх
ec	liquid water evaporation flux from canopy	interception evaporation	kg m ⁻² s ⁻¹	upward	түх
tran	Transpiration	vegetation transpiration	kg m ⁻² s ⁻¹	upward	түх
es	liquid water evaporation flux from soil	bare soil evaporation	kg m ⁻² s ⁻¹	upward	түх
mrro	runoff flux	total runoff	kg m ⁻² s ⁻¹	out	түх
mrrob	subsurface runoff flux	subsurface runoff	kg m ⁻² s ⁻¹	out	түх
snm	surface snow and ice melt flux	snowmelt	kg m ⁻² s ⁻¹	solid to	түх
			0	liquid	
snrefr	surface_snow_and_ice_refreezing_flux	refreezing of water in the snow	$kg m^{-2} s^{-1}$	liquid to solid	ТҮХ
dslw	change_over_time_in_water_content_of_ soil_layer	change in soil moisture	kg m ^{-2}	increase	ТҮХ
dsn	change_over_time_in_surface_snow_and_	change in snow water equivalent	kg m $^{-2}$	increase	ТҮХ
dsw	change_over_time_in_surface_water_amoun	change in surface water storage	kg m ⁻²	increase	ТҮХ
dcw	t change_over_time_in_canopy_water_amoun	change in interception storage	kg m $^{-2}$	increase	түх
	t		l2		T 10/
rzwc	water_content_or_root_zone	root zone soli moisture	kg m	-	TYX
cw	canopy_water_amount	total canopy water storage	kg m	-	TTX
snw	surrace_snow_amount	show water equivalent	kg m	-	
snwc	canopy_snow_amount	SWE Intercepted by the vegetation	kg m	-	TYX
SW	surrace_water_amount_assuming_no_snow	surrace water storage	kg m	-	
IIIIISI	moisture_content_of_soil_layer	average layer soli moisture	kg III	-	
mrsos	relative seil meisture content above	house total soil wetness	kg m	-	
mrsow	field_capacity	layer total soll wetness	-	-	IYX
tws	canopy_and_surface_and_subsurface_water_	terrestrial water storage	kg m $^{-2}$	-	ТҮХ
mrfsofr	mass fraction of frozen water in soil laver	average layer fraction of frozen moisture	_	_	TZYX
lasn	mass_fraction_of_inozen_water_in_soli_layer	snow liquid fraction	_	_	T7YX
snd	surface snow thickness	denth of snow laver	m	_	TYX
309500	are of surface snow	snow age	dav	_	TVY
nudgincw	nudging increment of total water	nudging increment of water	kg m ⁻²	increase	TYX
hur	relative humidity	relative humidity	к <u>е</u> 111 %	-	TYX
hurmax	relative_numidity_maximum	daily maximum near-surface relative	%	-	TYX
		humidity	<i></i>		
nurmin	relative_numlolty_minimum	daily minimum near-surface relative humidity	70	-	IYX
Additional			2		
preshead	soil_pressure_head	soil pressure head	kg m ⁻⁺	-	TZYX
hydcnd	soil_hydraulic_conductivity	soil hydraulic conductivity	kg m ⁻⁺ s ⁻⁺	-	TZYX
thrmcnd	soil_thermal_conductivity	soil thermal conductivity	W m ~ K ~ 1	-	TZYX
heatcap	soil_volumetric_heat_capacity	soil volumetric heat capacity	Jm K	-	ΓΖΥΧ

Soil Parameters Provided

It is currently assumed that all models solve the Richards equation. Soil parameters and textures are provided, which should be taken uniformly throughout the whole soil column.

For experiments 2 and 4, models have to set soil parameters given by SP-MIP (Table 3). For definitions see section "Soil Physics Background" below. Three mathematical descriptions of water retention curves are considered: Clapp and Hornberger (1978) and Mualem-van Genuchten (1980). Models that use different forms have to derive their input parameters from the given parameters of Table 2 for the closest match of the soil water retention curves.

Table 3: Soil parameters for the three considered water retention curves provided as input by SP-MIP for experiments 2 and 4.

Name	standard_name (cf)	long_name (netCDF)	Unit
he	air_entry_potential	air entry potential	m
mbc	brooks_corey_m	Brooks-Corey m parameter = Clapp-Hornberger b	-
thetar	residual soil moisture	residual soil moisture	$m^{3}m^{-3}$
thetas	saturated_soil_moisture	saturated soil moisture, porosity	m ³ m ⁻³
ks	saturated_hydraulic_conductivity	Hydraulic conductivity at saturation or at air entry	m s ⁻¹
lambdac	corey lambda	Corey lambda parameter	-
alphavg	van_genuchten_alpha	van Genuchten alpha parameter	m ⁻¹
nvg	van_genuchten_n	van Genuchten n parameter	-
mvg	van_genuchten_m	van Genuchten m parameter	-
thetafcch	clapp hornberger field capacity	Clapp-Hornberger field capacity	$m^{3} m^{-3}$
thetafcvg	van_genuchten_field_capacity	van Genuchten field capacity	m ³ m ⁻³
thetapwpch	clapp hornberger wilting point	Clapp-Hornberger permanent wilting point	$m^{3} m^{-3}$
thetapwpvg	van_genuchten_wilting_point	van Genuchten permanent wilting point	$m^{3} m^{-3}$

Soil Textural Properties Provided

For experiment 3, soil textural properties are provided, given in Table 4. The modelling groups have to derive their required parameters in their own usual way from the given texture.

Table 4: Soil textural properties provided by SP-MIP for experiment 3.

Name	standard_name (cf)	long_name (netCDF)	Unit
fclay	fraction_clay	fraction of clay	-
fsilt	fraction_silt	fraction of silt	-
fsand	fraction_sand	fraction of sand	-
rhosoil	bulk_density	dry bulk density	kg m ^{−3}
omsoil	organic_matter	organic matter content	g(C) kg ⁻¹

Soil Physics Background

The most commonly used soil water retention curves are Brooks & Corey (1964), Clapp and Hornberger (1978) and van Genuchten (1980). We use solely the Mualem (1976) model to link water retention curves with hydraulic conductivity.

Brooks & Corey (1964) defined:

$$h = h_e S^{-m} \tag{1}$$

$$S = \frac{\theta - \theta_r}{\theta - \theta} \tag{2}$$

$$K = K_s S^{\lambda}$$
(3)

(4)

with

λ

- h pressure head (m)
- *h_e* air entry potential/head (m)
- S relative saturation
- *m* Brooks-Corey m parameter
- θ volumetric soil moisture (m³ m⁻³)
- θ_r residual soil moisture (m³ m⁻³)
- θ_s porosity = saturated soil moisture (m³ m⁻³).
- *K* hydraulic conductivity (m s⁻¹)
- K_s hydraulic conductivity at air entry (m s⁻¹)
 - Corey lambda parameter
 - $\lambda = 5/2 + 2m$ (Mualem).

Clapp and Hornberger (1978) simplified Brooks & Corey (1964) by using

 $S = \frac{\theta}{\theta_s}$

all else equal but the Brooks-Corey m parameter is often called Clapp-Hornberger b.

van Genuchten (1980) defined:

$$h = \frac{1}{\alpha} \left(S^{-\frac{1}{m}} - 1 \right)^{\frac{1}{n}}$$
(5)
$$S = \frac{\theta - \theta_{r}}{2}$$
(6)

$$\frac{1}{\theta_s - \theta_r}$$

$$K_{s}\sqrt{S}\left(1-\left(1-S^{\overline{m}}\right)\right)$$
(8)

(8)

m = 1 - 1/n

with

if

h pressure head (m)

- S relative saturation
- *n* van Genuchten n parameter
- *m* van Genuchten m parameter
 - m=1-1/n (Mualem)
- θ volumetric soil moisture (m³ m⁻³)
- θ_r residual soil moisture (m³ m⁻³)
- θ_s porosity = saturated soil moisture (m³ m⁻³)

К =

- *K* hydraulic conductivity (m s⁻¹)
- K_s hydraulic conductivity at saturation (m s⁻¹).

Soil water limitation functions for plants often use (pressure heads at) field capacity and permanent wilting point. The former can be defined as the volumetric soil moisture at a pressure head of 3.3 m. The latter can be defined (in soil science) as the volumetric soil moisture at a pressure head of 150 m:

 $\theta_{fc}(h_{fc} = 3.3 m)$ field capacity (m³ m⁻³)

 $\theta_{pwp}(h_{pwp} = 150 \text{ m})$ permanent wilting point (m³ m⁻³).

References

Brooks RH and AT Corey (1964) Hydraulic properties of porous media, *Hydrology Papers* 3, Colorado State University, Fort Collins, CO, pp. 37.

Clapp RB and GM Hornberger (1978) Empirical equations for some soil hydraulic-properties, *Water Resources Research*, 14(4), 601–604.

van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, *Soil Science Society of America Journal*, 44(5), 892–898.

van den Hurk B *et al.* (2016) LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome, *Geoscientific Model Development*, 9(8), 2809–2832.

Kim H *et al.* (2017) A century-long global surface meteorology for offline terrestrial simulations, *in preparation*.

Montzka C *et al.* (2011) Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter, *Journal of Hydrology*, 399, 410–421.

Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media, *Water Resources Research*, 12(3), 513–522.