Soil Parameter Model Intercomparison Project (SP-MIP)

Coordination: Lukas Gudmundsson, Matthias Cuntz

Scientific Advisory Comittee: Sonia I. Seneviratne, Dani Or, Harry Vereecken, Anne Verhoef, Tomislav Hengl, Aaron Boone

Presentation by Vincent Humphrey & Aaron Boone

Background and purpose

- Large spread among LSMs with respect to water-balance variables (evapotranspiration, soil moisture, runoff, ...)
- To which degree is this spread related to soil model parameters?

Zabel et al. (HESS, 2012)

Soil parameters in LSMs

- Two main sources for model spread in terms of soil parameters
 - Step 1. Spatial information is obtained on soil class/texture (e.g. map of soil classes)
- $\Box \theta$ Step 2. Deriving model parameters for each class (using e.g. lookup tables)

• SP-MIP aims at quantifying the differences between LSM model results that stem from either of these two preparation steps for soil parameters.

Proposed experiments

- Closely follow the LS3MIP protocol (van den Hurk et al. 2016)
- 0.5° GSWP3 forcing, 1979-2014 (Kim et al. 2017, in prep.)
- 4 experiments, leading to 7 model runs

Proposed experiments

- Experiment 1: Soil-hydraulic parameters provided by SP-MIP
 - Baseline for model spread coming from everything else than soil parameters.
- <u>Experiment 2</u>: Soil-hydraulic parameters derived from common soil textural properties
 - Model variability related to the step of transferring soil textural information to soil hydraulic properties.

Proposed experiments

- Experiment 3: Reference run with all models in their status quo
 - Model variability related to the use of different soil maps.
- Experiment 4: Spatially uniform soil parameters (loamy sand, loam, clay, silt)
 - Importance of spatial variability for model spread.
 - Sensitivity of each model to soil hydraulic parameters.
 - Importance of spatial variability for water (and energy balance) outputs.

Summary

	Scenario	SP-MIP	Participating models
Experiment 1 (1 run)	Common soil parameter maps	+ Ξθ	
Experiment 2 (1 run)	Common soil texture maps		θ
Experiment 3 (1 run)	Default soil parameter maps		+ Ξθ
Experiment 4 (4 runs)	Spatially uniform soil parameters (loamy sand, loam, clay, silt)	+ Ξθ	

Soil texture maps provided by SP-MIP

• USDA dominant soil class at 0.5° resolution (from SoilGrids.org)

Global Soil Regions

Table 4: Soil textural properties provided by SP-MIP for experiment 2.

Name	standard_name (cf)	long_name (netCDF)	Unit
fclay	fraction_clay	fraction of clay	-
fsilt	fraction_silt	fraction of silt	-
fsand	fraction_sand	fraction of sand	-
rhosoil	bulk_density	dry bulk density	kg m⁻³
omsoil	organic_matter	organic matter content	g(C) kg ⁻¹

US Department of Agriculture Soil Survey Division Natural Resources World Soil Resources Conservation Service soils.usda.gov/use/worldsoils

November 2005

Θ Soil parameters provided by SP-MIP

• Two mathematical descriptions considered

- Brooks-Corey (1964)
- Mualem-van Genuchten (1980)

Table 3: Soil parameters for the considered water retention curves provided as input by SP-MIP for experiments 1 and 4.

Name	standard_name (cf)	long_name (netCDF)	Unit
he	air_entry_potential	air entry potential	m
mbc	brooks_corey_m	Brooks-Corey m parameter = Clapp-Hornberger b	-
thetar	residual_soil_moisture	residual soil moisture	m³ m⁻³
thetas	saturated_soil_moisture	saturated soil moisture, porosity	m ³ m ⁻³
ks	saturated_hydraulic_conductivit y	Hydraulic conductivity at saturation or at air entry	m s ^{−1}
lambdac	corey_lambda	Corey lambda parameter	_
alphavg	van_genuchten_alpha	van Genuchten alpha parameter	m ⁻¹
nvg	van_genuchten_n	van Genuchten n parameter	_
mvg	van_genuchten_m	van Genuchten m parameter	_
thetafcbc	brooks_corey_field_capacity	Brooks-Corey field capacity	m ³ m ⁻³
thetafcvg	van_genuchten_field_capacity	van Genuchten field capacity	m ³ m ⁻³
thetapwpbc	brooks_corey_wilting_point	Brooks-Corey permanent wilting point	m ³ m ⁻³
thetapwpvg	van_genuchten_wilting_point	van Genuchten permanent wilting point	m ³ m ⁻³

Some issues and proposed solutions (1)

- Simulation grid
 - same as GSWP3 forcing
- Length of simulation
 - 1979-2014 (instead of 1901-2010)
- Outputs
 - Although space-consuming, daily output is needed
 - Reduced set of variables compared to LS3MIP, with variable names conforming to CMIP6
- Soil hydraulic parameters varying with depth
 - Only in the default run
 - Parameters kept constant with depth for other experiments

Some issues and proposed solutions (2)

• Organic matter

- Model parameters given in Exp.1 and 4 will include OM
- OM content information will be provided for Exp.2
- Fixed or prognostic LAI
 - Prognostic LAI will be required across all of the experiments
- Carbon
 - Only LAI will be included in the output
 - Analysis focused on energy and water cycle variables
- Calendar
 - Simulation time window: moved from May to late summer 2017