Including Water Management in Large Scale Models @Gif-sur-Yvette.fr 2016.9.29

Development of Off-line Simulation Framework for Terrestrial Energy Water Cycles Incorporating Anthropogenic Processes

Hyungjun Kim,

Institute of Industrial Science, the University of Tokyo, Tokyo, Japan

& Thanks to : Tomoko Nitta, Yuta Ishitsuka, Dai Yamazaki, Naota Hanasaki, Tomohito Yamada, Kei Yoshimura, Taikan Oki

River Network and Routing Scheme Development

River Network and Routing Scheme Development

TRIP (Oki and Sud, 1998) based on ETOPO5, global 0.5°

FLOW (Yamazaki et al. 2009) based on SRTM30, flexible res.

SiB2 + TOPMODEL linear reservoir type Reservoir (Hanasaki et al. 2006) Wetland (Nitta et al. rev.) 氾濫域での蒸発 下ж 氾濫原の漫水 20 氾濫水の再浸透 CaMa-Flood (Yamazaki et al. 2011) Inundation + Diffusive wave Groundwater (Koirala et al. 2014) Yeh and Eltahir 2005 H08 (Hanasaki et al. 2008)

Bucket LSM + TRIP + SWIM + Reservoir + Env. Flow + Water Withdrawal

STRIP (Oki et al. 1999)

MATSIRO (Takata et al. 2003)

ELSE (Kim et al. 2009) based on JRA25 and multiple precipitations, global 1.0°

Structure of MIROC-ESM and Development Plan

? ? **H&L** ???? 6????????? ??4 ?**2**9

? ?G ??? ? H&L ???? 6??

Off-line Framework for Large-scale Land Simulation

Evaluation / Benchmarking System for Model Simulations and Input Data

Simulation Uncertainty – model vs input data –

Kim, 2010

Uncertainty in simulated evapotranspiration and runoff introduced by different land surface schemes in GSWP2 are larger than precipitation uncertainty-induced uncertainty by 28% and 40% in the similarity index (\Box) globally.

Generation Atmospheric Boundary Conditions

Model Input Data for EXP1 (long-term retrospective)

Dynamical Global Downscaling <u>Two-pass Bias Correction</u>

* Spectral Nudging using GSM (Yoshimura and Kanamitsu, 2008)
* Single Ensemble Correction (Yoshimura And Kanamitsu, 2013)
* Vertically Weighted Damping (Hong and Chang, 2012)

20CR (Compo et al., 2011) 1871-2010 6hr / 2°x2°(91x180)

* Parametric Monthly Correction (Watanabe et al., 2012)

Observations (Prcp: GPCC, CPC-Unified; Tair: CRU; Rad.: SRB) 1901-2010 3hr

GSWP3

LS3MIP

Forcing

????????????????????

8 17 ?? 17 6 22 Ptr ? 12 7 ??? D

Better representation of mean and <u>variability</u> in highfrequency domain

Comparison Table for Existing Forcing Data

	NCC	GSWP2	Princeton	ELSE	WATCH	GSWP3
Reference	Ngo D <mark>uc et</mark> al., <mark>2005</mark>	Dirmeyer et al., 2006	Sheffield et al., 2006	Kim et al., 2009	Weedon et al., 2011	Kim et al., in prep.
Temporal Coverage	19 <mark>48-2</mark> 000 53 years	1982-1995 14 years	1948-2008 61 years	1979-2010 32 years	1901-2001 101 years	1851-2011 161 years
Spa./Temp. Resolution	1 deg. 6 hours	1 deg. 3 hours	1 deg. 3 hours	1 deg. 6 hours	0.5 deg. 3 or 6 hours	0.5 deg. 3 hours
Base Reanalysis	NCEP/NCAR 1948 - now T62 / 6hr	NCEP/NCAR 1948 - now T62 / 6hr	NCEP/NCAR 1948 - now T62 / 6hr	JRA2 <mark>5</mark> 1948 – now T10 <mark>6 / 6</mark> hr	ERA-40 1957 - 2002 TL159 / 6hr	20CRv2c 1851 - 2011 2 deg. / 6hr
Spa. Dis- aggregation	Bi-linear	Bi-linear	Bi-linear, Bayesian	Bi-linear	Bi-linear	Dynamical Downscale
Temp. Dis- aggregation	N/A	Variability from Obs.	Variability from Obs.	N/A	Variability from Obs.	Dynamical Downscale
Bias Correction	Only monthly (Add/Ratio)	Only monthly (Add/Ratio)	Only monthly (Add/Ratio)	Only monthly (Add/Ratio)	Only monthly (Add/Ratio)	Monthly (Add/Ratio) & Daily (Non-para.)

Data Quality Evaluation

 + Beta-version of Land Surface Forcing Data Ready
 + Being used as a standard off-line climate driver of GSWP3, ISIMIP2, LS3MIP/LUMIP/CMIP6, and modeling groups.

Preliminary Results and Known Problems

+ Relatively small bias of solar radiation

Slater, 2015

ILAMB: International Land Model Benchmark

A tool for model development and assessment providing quick and comprehensive comparison against growing set of observations and metrics

- * C-cycle (8): Above ground live biomass, burned area, CO2, GPP, LAI, global net ecosystem carbon balance, NEE, ER, soil carbon
- * W-cycle (6): ET, LE, S, R, evaporative fraction, TWSA
- * E-cycle (6): albedo, SWup, SWnet, LWup, LWnet, Rnet
- * Forcing (5): Tair, precipitation, RH, SWdown, LWdown

Integrates 25 variables in 4 categories from ~60 datasets

Variable Score

Variable Z-score

Land-atmosphere Interaction in a Global Climate Model in Association with Human Activities

+ Spread of near surface temperature (2m Tair) among ensemble members becomes smaller by incorporating surface water-groundwater-human models in the AGCM.

T2m, GSWP2, July 30 - August 13

+ Sub-seasonal forecast skill for near surface air temperature (Day16-30) was improved by using realistic land initializations in the fully coupled AGCM with surface-groundwaterhuman models.

River Inundation Process in a Climate Model

2m Air Temperature

Hatono et al., in prep.

+ Warm bias at high latitudes is slightly (~10%) alleviated.

Impact of Arctic Wetlands on Climate System

+ Warm bias at high latitudes is considerably (up to ~30%) alleviated.

Including Water Management in Large Scale Models @ Gif-sur-Yvette.fr

Preliminary Results and Known Problems

+ Map (uncertainty of) water resources over the 20th century (and beyond)

Global distribution of the similarity index (2) for 2001-2010 of monthly mean and variance calculated from different dataset.

Since sharing observations to correct monthly bias, higher similarities are found in monthly mean fields than daily variance.