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Crucial to understanding and modeling water cycle

across multi-spheres in the Tibetan Plateau
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The Tibetan Plateau has been experiencing a rapid
climate change since middle of 1980s:
warming, moistening, wind stilling and solar dimming
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Hydrological cycle response: more runoff in central TP
and less runoff in south/east TP
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The positive trend in soil moisture derived from
microwave also supports NW TP got wet (m’m= per 10a)
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Summary on regional hydrological response

Spatial pattern of water balance change: Dry (Central and
Western TP) got less dry, and wet (Southern and Eastern TP)
got less wet. This 1s consistent with the pattern of lake change
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(Figure from Lei et al, 2014, Clim. Chang.)
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Water cycle change may be related to changes in several
components (precipitation, land/lake evaporation,
glacier/snow melting, frozen soil degradation)
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Develop an integrated model to understand interactions
among multi-spheres and quantify water cycle change (prec.,
land/lake evaporation, glacier melting, frozen soil)

Atmosphere

Land processes
Glacier Lake

Snow and mass evaporati
frozen soil balance on

River discharge and lake water balance
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Development of a Water and Energy Budget-
based Glacier mass balance Model

QAGUPUBL

(WEB-GM)

Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR018865

Key Points:

« A new glacier mass balance model
based on enthalpy budget was
developed

« Albedo parameterization was refined
to consider the impact of sleet and
shallow snow

« A dynamic snow/sleet/rain
identification scheme and a turbulent
heat flux scheme were implemented
to improve modeling

Correspondence to:
K. Yang,
yangk@itpcas.ac.cn;
dinabh@itocas.accn
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» Parlung No.4 Glacier —— =N
— Atypical maritime glacier in SE-TP|_ T-lhfw:" '\'a:w il |
— Area: ~11.7 km?
— Length: ~8 km
— Elevation: 4650 m ~ 5964 m

» Observation
— Net radiation
— Surface heat flux

— Meteorological data
— Ablation depth




» Deficiency: during water phase
transition, abundant energy
absorption/release occurs, but
surface temperatures remain at the
freezing point, which often induces
computational instability when

temperature 1s used as the

Liquid fraction in glacier layers
100%

Temperature(C

)

0%

Enthalpy-based model for numerical solution

» Solution: Enthalpy is used as the
unknown to ensure computational
stability. Enthalpy represents
energy state that 1s defined to be
zero for liquid water at the freezing
point. Enthalpy changes with
respect to the liquid fraction.
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B
Precipitation types highly depend on wet-

bulb temperature (Tw), RH, and elevation
Ratio
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Surface albedo

Simulated snow depth

Glacier melt

after melting (m)

(mw.e.)

The simulation results for a SE-Tibet glacier are
encouraging
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Modeling evaporation from cold and deep
alpine lakes in the Tibetan Plateau

SAGU

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2015JD024523

Key Points:

« Evaporation of Nam Co is simulated by
Flake model with good accuracy

« Simulated evaporation is much less
than Penman-equation-derived one
for the deep lake

« The evaporation change played a role
in suppressina the recent expansion

Quantifying evaporation and its decadal change
for Lake Nam Co, central Tibetan Plateau

Lazhu'?, Kun Yang'?, Junbo Wang'?, Yanbin Lei', Yingying Chen'?, Liping Zhu'?,
Baohong Ding’, and Jun Qin’

'Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research,
Chinese Academy of Sciences, Beijing, China, “University of Chinese Academy of Sciences, Beijing, China, *CAS Center for
Excellence in Tibetan Plateau Earth Sciences, Beijing, China



Lake temperature and turbulent fluxes
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) Lake Nam Co

(I) 215 5]0 km Legend

High : 8811 * Nam Co station

Low : 4000 A Monitoring station
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Two lake models with different complexity
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Model evaluation: WRF-lake severely underestimates MODIS-
observed lake temperature, while Flake model perform better
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Amplifying convective mixing coefficient may
improve energy transfer in the lake
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) Flake evaluation: surface energy balance
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Simulated evaporation is about 830+70 mm,
much less than potential evaporation



’) Change in lake evaporation since 1998
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Lake evaporation since the late 1990s is greater than
previous periods; thus, this change in evaporation has
suppressed the recent expansion of Lake Nam Co.
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What causes distinct precipitation biases in climate
models: much more in the Plateau and less in
adjacent regions!
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Water vapor measurement in South Tibetan Plateau

All the reanalyses have positive
biases along the PWV seasonal
cycle, which may be linked to

the well-known wet bias over the %5735 750 165 180 195 210 225 240 255 270

TP In current climate models
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Due to orographic drag on flow?

We conducted three simulations for the south TP,
with a resolution of 30km, 10km and 2km.
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Water vapor transport depends on WRF resolution

Cross-mountain water vapor flux simulated with dx=30km is 50%
higher than the one with dx=2km, mainly due to wind error
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Positive bias in vapor flux results in much more
precipitation in the Plateau and less 1n south slope
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Summary and Plan

» An energy-based glacier mass balance model were established for
simulation and projection of glacier change

» Lake evaporation models were evaluated. There is a big space for
lake modeling studies

» Current models may produce too strong water vapor transport
from South Asia to South Tibet, and a possible cause 1s that the
orographic drag of complex terrain is not well accounted.

» More studies are expected to quantify the contribution of complex
terrain and snow/glacier cover to water vapor transport, and lake-
air and land-air interactions to re-fill water vapor.



Look forward to cooperation!




