Overview on SeaFlux

Carol Anne Clayson, WHOI

With Brent Roberts, MSFC

And Jeremiah Brown, Principal Scientific Computing

5th GDAP Meeting

29 November – 1 December 2016

Washington, DC

Church et al., 2011

Under WCRP Data Advisory Council

(WDAC)

- Discussion of need for coordination and highlighting surface flux issues
 - Land, ocean, ice
 - Biogeochemical, heat, moisture, momentum
 - Turbulent, radiative
 - In situ, remote
- "promote a stronger dialogue and profile of flux efforts across WCRP and with sister programmes "
- □ Formed Surface Flux Task Team (C. A. Clayson/Brian Ward, chairs)
 - Cuts across GEWEX, CLIVAR, other WCRP groups
 - Members:
 - Carlos Jimenez (Observatoire de Paris, land, satellite, obs;
 - Jim Edson (U. Conn, ocean, obs);
 - Pierre-Philippe Mathieu (ESRIN, satellite);
 - Peter Gleckler (LLNL, modeling);
 - Ronald Buss de Souza (National Institute for Space Research, Brazil, ocean, obs)
 - Paul Stackhouse (NASA Langley, radiative fluxes, satellite, scientist extraordinaire);
 - Hans Peter Schmid (Karlsruhe Inst. Tech., biosphere, obs);
 - Anton Beljaars (ECMWF, land, modeling);
 - Saigusa Nobuko (Japan, National Inst. for Env. Studies, land, obs);
 - Petra Heil (University of Tasmania, sea ice, obs, remote sensing, modeling);

- International project under the auspices of the GEWEX Data and Assessments Panel: to improve our understanding and determination of ocean surface turbulent fluxes
- Our main questions:
 - What is feasible in terms of resolution and length-of-time series for satellite data?
 - Can we produce a high resolution dataset using satellites that is better than conventional climatology and NWP products?
 - What are the best methods for creating this dataset?
 - How do the different datasets perform under varying applications?
- □ Elements of the project include:
 - Evaluation of global flux products
 - Providing library of flux datasets and in situ data sets for easy comparisons by researchers
 - Production of a high-resolution (1°, 3 hourly) turbulent flux dataset

SeaFlux CDR version 2

Near-surface air temperature, humidity, and winds

- Based on Roberts et al. (2010) neural net technique
 - CLW content used to remove rain-contamination (except for F08)
 - F10 F18, pixels segregated by clear/cloudy sky
 - One neural net for F08, two for all others (total)
- SSM/I and SSMIS from CSU FCDR
- □ SST
 - Pre-dawn based on Reynolds OISST
 - Diurnal correction
 - Uses SRB, CERES, FLASHFlux for radiation, HOAPS, GPCP for precipitation
- Land mask from NOAA GSHHG, ice mask from AVHRR ice fraction, ISCCP ice shelf
- Uses neural net version of COARE
- Gap-filling methodology -- use of MERRA2 variability – 3 hour
- □ Available from 1988 through mid-2016

1999 Latent Heat Flux

1999 Sensible Heat Flux

Changes with satellites

Changes with satellites

Changes with satellites

Qa variability

40 N - 40 S average (area weighted)

Wind Speed variability

40 N – 40 S average (area weighted)

Global ocean average (area weighted)

Wind Speed variability

Global ocean average

(area weighted)

40 N – 40 S average (area weighted)

Comparisons with eddy covariance fluxes

Comparison of SeaFlux derived parameters with ICOADS Value-Added Database (ships of opportunity)

Evaluating uncertainty using IVAD data

Instantaneous error estimates

Uncertainty estimates of 10-year means

Qs-Qa Qs - Qa Total Uncertainty $\frac{g}{kg^{-1}}$ <u>g kg</u>-1 80°N 2 40°N Variable Global uncertainty 4 1.5 0° 2 40°S LHF (W m^{-2}) 0.5 8.2 (9%) 80°S ٥ SHF (W m^{-2}) 4.2 (24%) LHF LHF Total Uncertainty W m⁻² 250 $W m_{50}^{-2}$ Windspeed $(m s^{-1})$ 0.39 (5.2%) 80°N 200 40 $Qa (g kg^{-1})$ 0.45 (4.0%) 40[°]N 150 30 0° $SST(^{o}C)$ 0.12 (< 1%)100 20 40°S Ta (°C) 0.35 (2%) 50 10 80°S 0 0 Ts - Ta ($^{\circ}C$) 0.44 (33%) Wspd Total Uncertainty Wspd m s⁻¹ $m s^{-1}$ $Qs - Qa (g kg^{-1})$ 0.27 (8.2%) 80°N 15 0.8 40°N 0.6 10 0° 0.4 40°S 5 0.2 80°S 0 60°E 120°E 180°W 120°W 60°W 60°E 120°E 180°W 120°W 60°W 0° 0° 0° 0°

Uncertainty estimates of 10-year means

Regional biases (Qs-Qa)

- Different products show strong regional patterns of biases compared to IVAD
- QSQA biases are driven primarily by differences in Qa retrievals rather than SST
- GSSTF v3, HOAPS v2, and JOFURO v2 all show a similar large scale pattern of biases, with strong regional signatures over the subtropical trade wind regimes and West Pacific STCZ
- IFREMER v4 and SeaFlux-V1 show muted regional signature, but they are still evident

Retrieval biases and weather states

- The structure in the retrieval (Qa, top) biases appear to be co-aligned with patterns of cloud weather states (defined by ISCCP cloud-top histograms)
- The largest biases in several of the Qa retrievals are aligned best with Global WS 7 (Tselioudis et al. 2012) – mostly clear, with thin boundary layer clouds

Cloud impacts on passive microwave empirical retrieval algorithms

- Near-surface Qa, Ta, and wind speed retrievals show strong regime-dependent conditional biases
- Conditional-RMS also appears dependent on cloud weather state, but to lesser extent
 - When the underlying component of the conditional biases are regionally dependent, it is likely the application of "grouped" retrievals will result in regional biases

Binned Qa and Wspd vs. observed F15 TBs

New opportunities

- Passive microwave provide direct Binned Qa and Wspd vs. Clear-Sky simulated F15 TBs information on the clouds in atmospheric FOV
- We can decompose the observed , TB_{obs}, into clear-sky and cloudy-residual components

 $TB_{obs} = TB_{clr} + TB_{cld}$

- □ Then retrieve using {Qa,Ta,Wspd,SST} = $F^{-1}(TB_{clr})$
- Conditional-bias and RMS of near-surface parameters again: the Clear-Sky TB appear smaller and more consistent across all of the weather regimes

Final thoughts

There are multiple challenges at present for the development of accurate, precise, and consistent climate data records of turbulent latent and sensible heat fluxes.

- Large conditional/regional biases affect current remote sensing based estimates of near-surface air temperature and humidity, particularly under different cloud regimes
- Changes in the passive microwave observing system can generate anomalous variability in estimated turbulent fluxes:
- New advances are being made to address the development of climate-quality turbulent fluxes from remote sensing, including:
 - 1. Data Fusion
 - 2. New sensor development
 - 3. New approaches to handling cloud impacts on microwave TBs
 - 4. Improved sampling and analysis/blending techniques