MACv2 an AeroCom product

Stefan Kinne, MPI-Meteorology

AeroCom

- an (basically) unfunded initiative

 collaborative spirit no competition
- founded by common interests to advance understanding of model complexity

 common experiments / (input) emission data
- linking data and simulation groups

 annual meetings ... now with AeroSAT branch
- open access data archive visualization
 - <u>http://aerocom.met.no/Welcome.html</u> (talk to Jan)
- advance (climate) science understanding
 contributing to IPCC

based on community spirit

- data and modeling exchange (annual reunions)
- understanding of needs and limitations
- developing relationships / friendships
- sharing and helping (rather than competing)

PARIS 2003
 where it started

... over the years the participation kept growing

... and there always was something to remember

its heart: the data base

http://aerocom.met.no/

maintained by Michael Schulz

- 15 years of collection
 - simulations with complex aerosol modules
 for data access → jan.griesfeller@met.no
- visual interface for (quick) comparisons
 - to other models / simulations / assimilations
 - to 'observational' data (Aeronet, satellite data)
 - <u>http://aerocom.met.no/cgi-bin/aerocom/surfobs_annualrs.pl</u>
- you are encouraged to work with the data !
 - data are waiting to be analyzed !!!

Max-Planck Aerosol Climatology

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017

- 1x1 deg global, monthly, aerosol opt. properties
- capturing today's average properties for
 - column amount ('attenuation') AOD
 - column absorption ('composition')
 AAOD
 - particle 'size' information FMF, Angstrom
 - how? combine!
 - quality statistics from sun-photometer data
 - completeness from bottom-up modeling

relying on OBSERVATIONS of AERONET and MAN plus background from modeling (no direct use of satellite data)

why MAC?

... climate studies require aerosol rad. properties

- simulations from global modeling
 - accuracy suffers from input and complexity
 - time-consuming
- prescription by a climatology (e.g. MAC)
 - direct link to observations
 - fast (and simple to implement)

while the climatology can be a nice option in many applications ... the reliance on context from global modeling underlines to importance on advancements in detailed aerosol modeling

use observations if you can

AOD

AAOD (10 times)

complete modeling

FMF

ANG (div by 2)

annual means

extended with model context \rightarrow MACv2

FMF

ANG (div by 2)

particularly useful with extra help

- to make it useful for climate applications
 - anthropogenic fraction

-fine-mode only (no anthrop dust)

- temporal variability (seasonality)
- temporal variability (inter-annual)
 - only anthrop AOD change (const coarse-m.)
- spectral variability
- vertical distribution
- microphysics (fine-mode size → CCN conc.)
 changes to low cloud properties

ver.2 vs ver.1 (what changed?)

- merge absolute quantities, now in two steps
 - not relative properties (SSA, FMF, ...)
- use MAN data over oceans
 - reduced dep. on modeling
- use a different (higher) PI fine-mode state
 - anthropogenic AOD dropped by 30%
- outcome
 - AOD remains similar, but anthrop AOD smaller
 - AAOD is much stronger
 - less direct forcing (-0.5W/m2 to -0.2Wm2)

recent ver.2 update (what changed?)

better absorption attribution to size-modes allows now to quantify aerosol components

AOD by components

AOD SSAASY rad. transfer needs

AOD SSAASY rad. transfer needs

dir rad. impacts

at surface direct effect most important

changing impact on surf net fluxes

final slide

- update for MACv2 is available
- ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2017
 - next monthly pdf in place of single value
 - considering changes in fine-absorption
 - for specific spectral data needs: contact me
- forcing (and rad.effects)
 - indirect (via clouds) eff.s most import at TOA
 - direct effects most imp. in atm and at surface
 - over the last decades the aerosol induced reductions to on surface net-fluxes increased