# Update of GEWEX Cloud Assessment Data base



### Claudia Stubenrauch

Laboratoire de Météorologie Dynamique, IPSL, France



GDAP meeting, 29 Nov – 1 Dec 2016, Washington, USA

### **Cloud Assessment L3 Database**

to facilitate assessments, climate studies & model evaluation

monthly statistics per observation time at 1° x 1° (netCDF):

- averages
- variability
- histograms

### properties:

cloud amount, height, radiative & bulk microphysical properties height stratified (H/M/L) & liquid / ice statistics

2D ISCCP histograms: COD-CP (CEM-CP) -> cloud types

+ 2D ISCCP histograms weighted by CA



### -> cloud radiative effects

by weighting with cloud type radiative fluxes

| CPSW CRE |     |     |       |     | LW CRE |    |    |   | net CRE |     |     |  |
|----------|-----|-----|-------|-----|--------|----|----|---|---------|-----|-----|--|
| 440      | -25 | -87 | -126  |     | 31     | 60 | 61 | П | 5       | -28 | -66 |  |
| 680      | -29 | -81 | -99   |     | 13     | 22 | 21 | П | -16     | -59 | -78 |  |
| hPa      | -34 | -75 | -85   |     | 4      | 8  | 8  | П | -30     | -67 | -77 |  |
| III a    |     | 6   | , COE | ) - |        |    |    | ' |         |     |     |  |

(Chen et al. 2000)

assessing cloud climatologies in terms of TOA fluxes (ESA Cloud CCI phase 2)



# **Datasets & Teams**

**global gridded L3 data** (1° lat x 1° long) : monthly averages, variability, Probability Density Functions

| ISCCP GEWEX cloud dataset | 1984-2007 | (Rossow and Schiffer 1999)                         |
|---------------------------|-----------|----------------------------------------------------|
| MODIS-Science Team        | 2001-2009 | (Menzel et al.2008; Platnick et al. 2003)          |
| <b>MODIS-CERES</b>        | 2001-2009 | (Minnis et al. 2011)                               |
| <b>TOVS Path-B</b>        | 1987-1994 | (Stubenrauch et al. 1999, 2006; Rädel et al. 2003) |
| AIRS-LMD                  | 2003-2009 | (Stubenrauch et al. 2010; Guignard et al. 2012)    |
| HIRS-NOAA                 | 1982-2008 | (Wylie et al. 2005)                                |
| PATMOS-x (AVHRR)          | 1982-2009 | (Heidinger et al. 2012, Walther et al. 2012)       |
| ATSR-GRAPE                | 2003-2009 | (Sayer et al. 2011)                                |
| CALIPSO-Science Team      | 2007-2008 | (Winker et al. 2009)                               |
| <b>CALIPSO-GOCCP</b>      | 2007-2008 | (Chepfer et al. 2010)                              |
| MISR                      | 2001-2009 | (DiGirolamo et al. 2010)                           |
| POLDER                    | 2006-2008 | (Parol et al. 2004; Ferlay et al. 2010)            |

## Assessment of new datasets ...



### SESA Cloud\_cci: creating longterm cloud dataset from AVHRR, AATSR

(Retrieval based on Optimal estimation)





Cloud\_cci datasets not very sensitive to cirrus

AIRS-LMD V2 similar to AIRS-LMD V1; using ancillary atmospheric profiles from AIRS (NASA V6) & ERA-Interim -> additional uncertainty estimation



VHRR-Cloud cci

#### **Cloud Assessment**

# **Datasets & Teams**

EUMETSAT Climate Monitoring, DWD

ESA, DWD

property updated data base: improved versions + new data sets, -2016 global gridded L3 data (1° lat x 1° long): monthly averages, variability, Probability Density Functions **ISCCP** GEWEX cloud dataset 1984-2007 (Rossow and Schiffer 1999) MODIS-Science Team *2001-2009* (Menzel et al. 2008; Platnick et al. 2003) **MODIS-CERES** *2001-2009* (Minnis et al. 2011) OVS Path-B -> HIRS-CM SAF 1987-1994 (Stubenrauch et al. 1999, 2006) -> CM SAF **AIRS-LMD** *2003-2009* (Stubenrauch et al. 2010) -> AERIS HIRS-NOAA 1982-2008 (Wylie et al. 2005) PATMOS-x (AVHRR) 1982-2009 (Heidinger et al. 2012, Walther et al. 2012) ATSR-GRAPE -> AATSR-Cloud\_cci *2003-2009* (Sayer et al. 2011) -> ESA Cloud-cci CALIPSO-Science Team *2007-2008* (*Winker et al. 2009*) CALIPSO-GOCCP 2007-2008 (Chepfer et al. 2010) 2001-2009 (DiGirolamo et al. 2010) POLDER 2006-2008 (*Parol et al. 2004*; *Ferlay et al. 2010*) **TASI-LMD** 2008-2016 French Data Centre AERIS **PATMOS-MODIS** NOAA CLARA-CM SAF (AVHRR)

# GEWEX Cloud Assessment Web-site A. Feofilov, LMD



- General sections: description, meetings, publications, etc
- "Datasets": provides individual descriptions
- "Database": contains links to zipped netCDF files. grouped per variable, instrument and year, ftp-accessed.

http://climserv.ipsl.polytechnique.fr/gewexca

# **Statistics of Access to Web-site**



announcement

# **Conclusions & thoughts for discussion**

**GEWEX Cloud Assessment database:** 12 global 'state of the art' datasets (in 2008)

- > joint effort to build consistent database:
  - 1) developing strategy for L2 -> L3 processing (2010 workshop)
  - 2) Iterative process:

analyses -> problems -> feedback to teams -> correction by teams

some inconsistencies in L2->L3 processing remained;

AM-PM definition CALIPSO, MODIS-CE histograms not usable...

### **Utility of database:**

- improvement of existing datasets & for assessment of new datasets
- >climate studies (CFMIP-OBS database used for model evaluation)
- -> demand from users to update the database

### **Update** (same data format, same website structure, AERIS):

- ➤9 participating datasets + 4 new datasets
- ►1 analysis
- note to BAMS with summary of improvements (if any...)

Should we be more specific about advantages & weaknesses of datasets ???

# **GEWEX CA L2 -> L3 Aggregation**

at specific local time

### What are the properties of the cloud when present within 1°x1°?

discussed & agreed upon at workshop in 2010

- √ first average over space (1° x 1°) & then over time (month)
- ✓ at higher latitudes with orbit overlaps, choose measurements closest to local observation time (keep data with smallest viewing angle)

### **Data processing by teams** (Fortran program was provided)

- > cloud properties do not depend on instantaneous measurement & cloud grid coverage
- > appropriate way to compare data of different spatial resolution and to compare to climate models

Differences compared to monthly averaging over pixels: ex AIRS-LMD



difference in CA small, but larger (& systematic) for other properties, depending on cloud scenes

| variable | ISCCP    | PATIMOSX | HIRS-<br>NOAA | TOVSB    | AIRS-<br>LMD                                     | MODIS<br>-ST | MODIS<br>-CE | MISR | POLDER     | ATSR-<br>GRAPE | CALIPSO-                                         | GOCCO        |
|----------|----------|----------|---------------|----------|--------------------------------------------------|--------------|--------------|------|------------|----------------|--------------------------------------------------|--------------|
| CA       | ash      | as       | а             | ash      | ash                                              | ash          | ash          | а    | ash        | ash            | ah                                               | ah           |
| CAH      | as       | as       | а             | as       | as                                               | as           | as           | а    | ash        |                | а                                                | а            |
| CAM      | as       | as       | a             | as       | as                                               | as           | as           | a    | ash        |                | a                                                | a            |
| CAL      | as       | as       | a             | as       | as                                               | as           | as           | а    | ash        |                | a                                                | a            |
| CAW      | as       | as       |               | as       | as                                               | as           | as           |      | ash        |                | a                                                |              |
| CAI      | as       | as       |               | as       | as                                               | as           | as           |      | ash        |                | a                                                |              |
| CAIH     | as       | as       |               | as       | as                                               | us           | as           |      | ash        |                | a                                                |              |
| CAE      | ash      | as       | а             | ash      | ash                                              | ash          | ash          |      | ash        |                | -                                                |              |
| CAEH     | as       | as       | a             | as       | as                                               | uon          | as           |      | uon        |                |                                                  |              |
| CAEM     | as       | as       | a             | as       | as                                               |              | as           |      |            |                |                                                  |              |
| CAEL     | as       | as       | a             | as       | as                                               |              | as           |      |            |                |                                                  | <del> </del> |
| CAEW     | as       | as       | - u           | as       | as                                               |              | as           |      |            |                |                                                  |              |
| CAEI     | as       | as       |               | as       | as                                               |              | as           |      |            |                |                                                  | _            |
| CAEIH    | as       | สอ       |               | as       | as                                               |              | as           |      |            |                |                                                  |              |
| CAHR     | as       | a        | а             | as       | as                                               | а            | as           | а    | ash        | as             | а                                                | а            |
| CAMR     |          |          |               | <b>+</b> | <del>                                     </del> |              |              |      |            |                | <del>                                     </del> |              |
| CALR     | as       | a        | a             | as       | as                                               | a            | as           | a    | ash        | as             | a                                                | a            |
| CAUR     | as       | a        | а             | as       | as                                               | a            | as           | а    | ash        | as             | a                                                | а            |
| CAVR     | as       | a        |               | as       | as                                               | a            | _            | -    | ash        | as             | a                                                | -            |
| CAIR     | as<br>as | a        |               | as       | as<br>as                                         | a            | _            |      | ash<br>ash | as             | a                                                | _            |
| CP       |          |          | ah            |          |                                                  |              | 20           |      |            | ach            | а                                                |              |
| CZ       | ash      | ash      | ah            | ash      | ash                                              | ash          | as           | ah   | ash        | ash            | ah                                               | ah           |
|          | ash      | aab      | ah            |          | ash                                              | aab          | ash          | ah   |            | 206            | ah                                               | ah           |
| CT       | ash .    | ash      | ah            | ash      | ash                                              | ash          | as           |      |            | ash            | ah                                               | ah           |
| СТН      | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            | ah                                               | ah           |
| СТМ      | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            | ah                                               | ah           |
| CTL      | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            | ah                                               | ah           |
| CTW      | ash      | ash      |               | ash      | ash                                              | ash          | as           |      |            | ash            | ah                                               |              |
| СТІ      | ash      | ash      |               | ash      | ash                                              | ash          | as           |      |            | ash            | ah                                               |              |
| CTIH     | ash      | ash      |               | ash      | ash                                              |              | as           |      |            | ash            | ah                                               |              |
| CEM      | ash      | ash      | а             | ash      | ash                                              | ash          | as           |      |            | ash            |                                                  |              |
| CEMH     | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            |                                                  |              |
| CEMM     | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            |                                                  |              |
| CEML     | ash      | ash      | а             | ash      | ash                                              |              | as           |      |            | ash            |                                                  |              |
| CEMW     | ash      | ash      |               | ash      | ash                                              |              | as           |      |            |                |                                                  |              |
| CEMI     | ash      | ash      |               | ash      | ash                                              |              | as           |      |            |                |                                                  |              |
| CEMIH    | ash      | ash      |               | ash      | ash                                              |              | as           |      |            |                |                                                  |              |
| COD      | ash      | ash      |               | ash      | ash                                              | ash          | ash          |      | ash        | ash            |                                                  |              |
| CODH     | ash      | ash      |               | as       | ash                                              | ash          | as           |      | ash        | ash            |                                                  |              |
| CODM     | ash      | ash      |               | as       | ash                                              | ash          | as           |      | ash        | ash            |                                                  |              |
| CODL     | ash      | ash      |               | as       | ash                                              | ash          | as           |      | ash        | ash            |                                                  |              |
| CODW     | ash      | ash      |               | as       | ash                                              | ash          | ash          |      | ash        | ash            |                                                  |              |
| CODI     | ash      | ash      |               | as       | ash                                              | as           | ash          |      | ash        | ash            |                                                  |              |
| CODIH    | ash      | ash      |               | as       | ash                                              | ash          | as           |      | ash        | ash            |                                                  |              |
| CLWP     | ash      | ash      |               |          |                                                  | ash          | ash          |      |            | ash            |                                                  |              |
| CIWP     | ash      | ash      |               |          |                                                  | ash          | as           |      |            | ash            |                                                  |              |
| CIWPH    | ash      | ash      |               | ash      | ash                                              |              | as           |      |            | ash            |                                                  |              |
| CREW     | ash      | ash      |               |          |                                                  | ash          | ash          |      |            | ash            |                                                  |              |
| CREI     | ash      | ash      |               |          |                                                  | ash          | ash          |      |            | ash            |                                                  |              |
| CREIH    | ash      |          |               | ash      | ash                                              | ash          | as           |      |            | ash            |                                                  |              |
| COD/CP   | X        | х        |               | х        | х                                                |              |              |      | х          | х              |                                                  |              |
| CODW/CP  |          |          |               |          |                                                  | х            |              |      |            |                |                                                  |              |
| CODI/CP  |          |          |               | х        | x                                                | X            |              |      |            |                |                                                  |              |
| CEM/CP   | х        | х        |               | X        | X                                                | X            |              |      |            |                |                                                  |              |
| CODWCREW | X        | ^        |               |          |                                                  | х            |              |      |            |                |                                                  |              |
| CODICRE  | X        | X        |               | x        | х                                                | x            |              |      |            |                |                                                  |              |
| CEMICRE  |          |          |               | + **     |                                                  | +            |              |      |            |                |                                                  |              |

#### 56 variables

a: averages

s: variability

h: histogram

12 datasets

2 - 25 years

≤ 4 observation times

zipped: 160 Gb unzipped: 1.4 Tb

histograms of MODIS-CE not usable

# **GEWEX Cloud Assessment: Key results**



Database (monthly statistics) available at http://climserv.ipsl.polytechnique.fr/gewexca

IR-NIR-VIS Radiometers, IR Sounders, multi-angle VIS-SWIR Radiometers exploit different parts of EM spectrum: How does this affect climatic averages & distributions?



global cloud amount  $68\% \pm 3\%$ , with cloud opt. depth > 0.1 amount of high-level clouds depends on instrument performance to identify thin Ci IR sounders are passive instruments most sensitive to Ci geographical distributions & seasonal cycles similar passive remote sensing determines 'radiative' height

